A Backward Feature Selection by Creating Compact Neural Network Using Coherence Learning and Pruning

Author(s):  
Md. Monirul Kabir ◽  
◽  
Md. Shahjahan ◽  
Kazuyuki Murase ◽  
◽  
...  

In this paper we propose a new backward feature selection method that generates compact classifier of a three-layered feed-forward artificial neural network (ANN). In the algorithm, that is based on the wrapper model, two techniques, coherence and pruning, are integrated together in order to find relevant features with a network of minimal numbers of hidden units and connections. Firstly, a coherence learning and a pruning technique are applied during training for removing unnecessary hidden units from the network. After that, attribute distances are measured by a straightforward computation that is not computationally expensive. An attribute is then removed based on an error-based criterion. The network is retrained after the removal of the attribute. This unnecessary attribute selection process is continued until a stopping criterion is satisfied. We applied this method to several standard benchmark classification problems such as breast cancer, diabetes, glass identification and thyroid problems. Experimental results confirmed that the proposed method generates compact network structures that can select relevant features with good classification accuracies.

Symmetry ◽  
2020 ◽  
Vol 12 (2) ◽  
pp. 271 ◽  
Author(s):  
Md Akizur Rahman ◽  
Ravie Chandren Muniyandi

An artificial neural network (ANN) is a tool that can be utilized to recognize cancer effectively. Nowadays, the risk of cancer is increasing dramatically all over the world. Detecting cancer is very difficult due to a lack of data. Proper data are essential for detecting cancer accurately. Cancer classification has been carried out by many researchers, but there is still a need to improve classification accuracy. For this purpose, in this research, a two-step feature selection (FS) technique with a 15-neuron neural network (NN), which classifies cancer with high accuracy, is proposed. The FS method is utilized to reduce feature attributes, and the 15-neuron network is utilized to classify the cancer. This research utilized the benchmark Wisconsin Diagnostic Breast Cancer (WDBC) dataset to compare the proposed method with other existing techniques, showing a significant improvement of up to 99.4% in classification accuracy. The results produced in this research are more promising and significant than those in existing papers.


2021 ◽  
Vol 25 (1) ◽  
pp. 21-34
Author(s):  
Rafael B. Pereira ◽  
Alexandre Plastino ◽  
Bianca Zadrozny ◽  
Luiz H.C. Merschmann

In many important application domains, such as text categorization, biomolecular analysis, scene or video classification and medical diagnosis, instances are naturally associated with more than one class label, giving rise to multi-label classification problems. This has led, in recent years, to a substantial amount of research in multi-label classification. More specifically, feature selection methods have been developed to allow the identification of relevant and informative features for multi-label classification. This work presents a new feature selection method based on the lazy feature selection paradigm and specific for the multi-label context. Experimental results show that the proposed technique is competitive when compared to multi-label feature selection techniques currently used in the literature, and is clearly more scalable, in a scenario where there is an increasing amount of data.


2008 ◽  
Author(s):  
Xiaojia Wang ◽  
Qirong Mao ◽  
Yongzhao Zhan ◽  
Theodore E. Simos ◽  
George Psihoyios

Author(s):  
Priti Srinivas Sajja

Artificial Neural Network (ANN) based systems are bio-inspired mechanisms for intelligent decision support with capabilities to learn generalized knowledge from the large amount of data and offers high degree of self-learning. However, the knowledge in such ANN system is stored in the generalized connection between neurons in implicit fashion, which does not help in providing proper explanation and reasoning to users of the system and results in low level of user friendliness. On the other hand, fuzzy systems are very user friendly, represent knowledge in highly readable form and provide friendly justification to users as knowledge is stored explicitly in the system. Type-2 fuzzy systems are one step ahead while computing with words in comparison to typical fuzzy systems. This chapter introduces a generic framework of type-2 fuzzy interface to an ANN system for course selection process. Resulting neuro-fuzzy system offers advantages of self-learning and implicit knowledge representation along with the utmost user friendliness and explicit justification.


Author(s):  
Yu Zhang ◽  
Cangzhi Jia ◽  
Melissa Jane Fullwood ◽  
Chee Keong Kwoh

Abstract The development of deep sequencing technologies has led to the discovery of novel transcripts. Many in silico methods have been developed to assess the coding potential of these transcripts to further investigate their functions. Existing methods perform well on distinguishing majority long noncoding RNAs (lncRNAs) and coding RNAs (mRNAs) but poorly on RNAs with small open reading frames (sORFs). Here, we present DeepCPP (deep neural network for coding potential prediction), a deep learning method for RNA coding potential prediction. Extensive evaluations on four previous datasets and six new datasets constructed in different species show that DeepCPP outperforms other state-of-the-art methods, especially on sORF type data, which overcomes the bottleneck of sORF mRNA identification by improving more than 4.31, 37.24 and 5.89% on its accuracy for newly discovered human, vertebrate and insect data, respectively. Additionally, we also revealed that discontinuous k-mer, and our newly proposed nucleotide bias and minimal distribution similarity feature selection method play crucial roles in this classification problem. Taken together, DeepCPP is an effective method for RNA coding potential prediction.


2013 ◽  
Vol 427-429 ◽  
pp. 2045-2049
Author(s):  
Chun Mei Yu ◽  
Sheng Bo Yang

To increase fault classification performance and reduce computational complexity,the feature selection process has been used for fault diagnosis.In this paper, we proposed a sparse representation based feature selection method and gave detailed procedure of the algorithm. Traditional selecting methods based on wavelet package decomposition and Bhattacharyya distance methods,and sparse methods, including sparse representation classifier, sparsity preserving projection and sparse principal component analysis,were compared to the proposed method.Simulations showed the proposed selecting method gave better performance on fault diagnosis with Tennessee Eastman Process data.


2004 ◽  
Vol 14 (06) ◽  
pp. 407-414 ◽  
Author(s):  
KYUNGSUN KIM ◽  
HARKSOO KIM ◽  
JUNGYUN SEO

A speech act is a linguistic action intended by a speaker. Speech act classification is an essential part of a dialogue understanding system because the speech act of an utterance is closely tied with the user's intention in the utterance. We propose a neural network model for Korean speech act classification. In addition, we propose a method that extracts morphological features from surface utterances and selects effective ones among the morphological features. Using the feature selection method, the proposed neural network can partially increase precision and decrease training time. In the experiment, the proposed neural network showed better results than other models using comparatively high-level linguistic features. Based on the experimental result, we believe that the proposed neural network model is suitable for real field applications because it is easy to expand the neural network model into other domains. Moreover, we found that neural networks can be useful in speech act classification if we can convert surface sentences into vectors with fixed dimensions by using an effective feature selection method.


Sign in / Sign up

Export Citation Format

Share Document