Advanced Genetic Algorithms Based on Adaptive Partitioning Method

Author(s):  
Chang-Wook Han ◽  
◽  
Hajime Nobuhara ◽  

Genetic algorithms (GA) are well known and very popular stochastic optimization algorithm. Although, GA is very powerful method to find the global optimum, it has some drawbacks, for example, premature convergence to local optima, slow convergence speed to global optimum. To enhance the performance of the GA, this paper proposes an adaptive genetic algorithm based on partitioning method. The partitioning method, which enables a genetic algorithm to find a solution very effectively, adaptively divides the search space into promising sub-spaces to reduce the complexity of optimization. This partitioning method is more effective as the complexity of the search space is increasing. The validity of the proposed method is confirmed by applying it to several bench mark test function examples and a traveling salesman problem.

F1000Research ◽  
2013 ◽  
Vol 2 ◽  
pp. 139
Author(s):  
Maxinder S Kanwal ◽  
Avinash S Ramesh ◽  
Lauren A Huang

Recent development of large databases, especially those in genetics and proteomics, is pushing the development of novel computational algorithms that implement rapid and accurate search strategies. One successful approach has been to use artificial intelligence and methods, including pattern recognition (e.g. neural networks) and optimization techniques (e.g. genetic algorithms). The focus of this paper is on optimizing the design of genetic algorithms by using an adaptive mutation rate that is derived from comparing the fitness values of successive generations. We propose a novel pseudoderivative-based mutation rate operator designed to allow a genetic algorithm to escape local optima and successfully continue to the global optimum. Once proven successful, this algorithm can be implemented to solve real problems in neurology and bioinformatics. As a first step towards this goal, we tested our algorithm on two 3-dimensional surfaces with multiple local optima, but only one global optimum, as well as on the N-queens problem, an applied problem in which the function that maps the curve is implicit. For all tests, the adaptive mutation rate allowed the genetic algorithm to find the global optimal solution, performing significantly better than other search methods, including genetic algorithms that implement fixed mutation rates.


F1000Research ◽  
2013 ◽  
Vol 2 ◽  
pp. 139
Author(s):  
Maxinder S Kanwal ◽  
Avinash S Ramesh ◽  
Lauren A Huang

The fields of molecular biology and neurobiology have advanced rapidly over the last two decades. These advances have resulted in the development of large proteomic and genetic databases that need to be searched for the prediction, early detection and treatment of neuropathologies and other genetic disorders. This need, in turn, has pushed the development of novel computational algorithms that are critical for searching genetic databases. One successful approach has been to use artificial intelligence and pattern recognition algorithms, such as neural networks and optimization algorithms (e.g. genetic algorithms). The focus of this paper is on optimizing the design of genetic algorithms by using an adaptive mutation rate based on the fitness function of passing generations. We propose a novel pseudo-derivative based mutation rate operator designed to allow a genetic algorithm to escape local optima and successfully continue to the global optimum. Once proven successful, this algorithm can be implemented to solve real problems in neurology and bioinformatics. As a first step towards this goal, we tested our algorithm on two 3-dimensional surfaces with multiple local optima, but only one global optimum, as well as on the N-queens problem, an applied problem in which the function that maps the curve is implicit. For all tests, the adaptive mutation rate allowed the genetic algorithm to find the global optimal solution, performing significantly better than other search methods, including genetic algorithms that implement fixed mutation rates.


2004 ◽  
Vol 12 (1) ◽  
pp. 47-76 ◽  
Author(s):  
Jonathan Rowe ◽  
Darrell Whitley ◽  
Laura Barbulescu ◽  
Jean-Paul Watson

Representations are formalized as encodings that map the search space to the vertex set of a graph. We define the notion of bit equivalent encodings and show that for such encodings the corresponding Walsh coefficients are also conserved. We focus on Gray codes as particular types of encoding and present a review of properties related to the use of Gray codes. Gray codes are widely used in conjunction with genetic algorithms and bit-climbing algorithms for parameter optimization problems. We present new convergence proofs for a special class of unimodal functions; the proofs show that a steepest ascent bit climber using any reflected Gray code representation reaches the global optimum in a number of steps that is linear with respect to the encoding size. There are in fact many different Gray codes.Shifting is defined as a mechanism for dynamically switching from one Gray code representation to another in order to escape local optima. Theoretical results that substantially improve our understanding of the Gray codes and the shifting mechanism are presented. New proofs also shed light on the number of unique Gray code neighborhoods accessible via shifting and on how neighborhood structure changes during shifting. We show that shifting can improve the performance of both a local search algorithm as well as one of the best genetic algorithms currently available.


2019 ◽  
Vol 2019 ◽  
pp. 1-9 ◽  
Author(s):  
Muslum Kilinc ◽  
Juan M. Caicedo

In engineering, optimization applications are commonly used to solve various problems. As widely known, solution of an engineering problem does not have a unique result; moreover, the solution of a unique problem may totally differ from one engineer to another. On the other hand, one of the most commonly used engineering optimization methods is genetic algorithm that leads us to only one global optimum. As to mention, engineering problems can conclude in different results from the point of different engineers’ views. In this study, a modified genetic algorithm named multi-solution genetic algorithm (MsGA) based on clustering and section approaches is presented to identify alternative solutions for an engineering problem. MsGA can identify local optima points along with global optimum and can find numerous solution alternatives. The reliability of MsGA was tested by using a Gaussian and trigonometric function. After testing, MsGA was applied to a truss optimization problem as an example of an engineering optimization problem. The result obtained shows that MsGA is successful at finding multiple plausible solutions to an engineering optima problem.


Author(s):  
Abdullah Türk ◽  
Dursun Saral ◽  
Murat Özkök ◽  
Ercan Köse

Outfitting is a critical stage in the shipbuilding process. Within the outfitting, the construction of pipe systems is a phase that has a significant effect on time and cost. While cutting the pipes required for the pipe systems in shipyards, the cutting process is usually performed randomly. This can result in large amounts of trim losses. In this paper, we present an approach to minimize these losses. With the proposed method it is aimed to base the pipe cutting process on a specific systematic. To solve this problem, Genetic Algorithms (GA), which gives successful results in solving many problems in the literature, have been used. Different types of genetic operators have been used to investigate the search space of the problem well. The results obtained have proven the effectiveness of the proposed approach.


2021 ◽  
Author(s):  
Che-Hang Cliff Chan

The thesis presents a Genetic Algorithm with Adaptive Search Space (GAASS) proposed to improve both convergence performance and solution accuracy of traditional Genetic Algorithms(GAs). The propsed GAASS method has bee hybridized to a real-coded genetic algorithm to perform hysteresis parameters identification and hystereis invers compensation of an electromechanical-valve acuator installed on a pneumatic system. The experimental results have demonstrated the supreme performance of the proposed GAASS in the search of optimum solutions.


Author(s):  
Tommy Hult ◽  
Abbas Mohammed

Efficient use of the available licensed radio spectrum is becoming increasingly difficult as the demand and usage of the radio spectrum increases. This usage of the spectrum is not uniform within the licensed band but concentrated in certain frequencies of the spectrum while other parts of the spectrum are inefficiently utilized. In cognitive radio environments, the primary users are allocated licensed frequency bands while secondary cognitive users dynamically allocate the empty frequencies within the licensed frequency band according to their requested QoS (Quality of Service) specifications. This dynamic decision-making is a multi-criteria optimization problem, which the authors propose to solve using a genetic algorithm. Genetic algorithms traverse the optimization search space using a multitude of parallel solutions and choosing the solution that has the best overall fit to the criteria. Due to this parallelism, the genetic algorithm is less likely than traditional algorithms to get caught at a local optimal point.


Author(s):  
Bo-Suk Yang

This chapter describes a hybrid artificial life optimization algorithm (ALRT) based on emergent colonization to compute the solutions of global function optimization problem. In the ALRT, the emergent colony is a fundamental mechanism to search the optimum solution and can be accomplished through the metabolism, movement and reproduction among artificial organisms which appear at the optimum locations in the artificial world. In this case, the optimum locations mean the optimum solutions in the optimization problem. Hence, the ALRT focuses on the searching for the optimum solution in the location of emergent colonies and can achieve more accurate global optimum. The optimization results using different types of test functions are presented to demonstrate the described approach successfully achieves optimum performance. The algorithm is also applied to the test function optimization and optimum design of short journal bearing as a practical application. The optimized results are compared with those of genetic algorithm and successive quadratic programming to identify the optimizing ability.


2014 ◽  
Vol 2014 ◽  
pp. 1-14 ◽  
Author(s):  
Hui Lu ◽  
Zheng Zhu ◽  
Xiaoteng Wang ◽  
Lijuan Yin

Test task scheduling problem (TTSP) is a typical combinational optimization scheduling problem. This paper proposes a variable neighborhood MOEA/D (VNM) to solve the multiobjective TTSP. Two minimization objectives, the maximal completion time (makespan) and the mean workload, are considered together. In order to make solutions obtained more close to the real Pareto Front, variable neighborhood strategy is adopted. Variable neighborhood approach is proposed to render the crossover span reasonable. Additionally, because the search space of the TTSP is so large that many duplicate solutions and local optima will exist, the Starting Mutation is applied to prevent solutions from becoming trapped in local optima. It is proved that the solutions got by VNM can converge to the global optimum by using Markov Chain and Transition Matrix, respectively. The experiments of comparisons of VNM, MOEA/D, and CNSGA (chaotic nondominated sorting genetic algorithm) indicate that VNM performs better than the MOEA/D and the CNSGA in solving the TTSP. The results demonstrate that proposed algorithm VNM is an efficient approach to solve the multiobjective TTSP.


2013 ◽  
Vol 333-335 ◽  
pp. 1256-1260
Author(s):  
Zhen Dong Li ◽  
Qi Yi Zhang

For the lack of crossover operation, from three aspects of crossover operation , systemically proposed one kind of improved Crossover operation of Genetic Algorithms, namely used a kind of new consistent Crossover Operator and determined which two individuals to be paired for crossover based on relevance index, which can enhance the algorithms global searching ability; Based on the concentrating degree of fitness, a kind of adaptive crossover probability can guarantee the population will not fall into a local optimal result. Simulation results show that: Compared with the traditional cross-adaptive genetic Algorithms and other adaptive genetic algorithm, the new algorithms convergence velocity and global searching ability are improved greatly, the average optimal results and the rate of converging to the optimal results are better.


Sign in / Sign up

Export Citation Format

Share Document