Adaptive Cruise Control Based on Reinforcement Leaning with Shaping Rewards

Author(s):  
Zhaohui Hu ◽  
◽  
Dongbin Zhao

This paper proposes a Supervised Reinforcement Learning (SRL) algorithm for the Adaptive Cruise Control system (ACC) to comply with human driving habit, which can be thought of as a dynamic programming problem with stochastic demands. In short, the ACC problem can be deemed as the host vehicle adopting different control parameters (accelerations in the upper controller, brakes and throttles in the bottom controller) in the process of following or other driving situations according to the driver’s behavior. We discretize the relative speed as well as the relative distance to construct the two-dimensional states and map them to a one-dimensional state space; discretize the acceleration to generate the action set; and design additional speed improvement shaping reward and distance improvement shaping reward to construct the supervisor. We apply the SRL algorithm to the ACC problem in different scenarios. The results show the higher robustness and accuracy of the SRL control policy compared with traditional control methods.

Author(s):  
Liangyao Yu ◽  
Ruyue Wang

Adaptive Cruise Control (ACC) is one of Advanced Driver Assistance Systems (ADAS) which takes over vehicle longitudinal control under necessary driving scenarios. Vehicle in ACC mode automatically adjusts speed to follow the preceding vehicle based on evaluation of the surrounding traffic. ACC reduces drivers’ workload as well as improves driving safety, energy economy, and traffic flow. This article provides a comprehensive review of the researches on ACC. Firstly, an overview of ACC controller and applied control theories are introduced. Their principles and performances are discussed. Secondly, several application cases of ACC control algorithms are presented. Then validation work including simulation, Hardware-in-the-Loop (HiL) test and on-road experiment is descripted to provide ideas for testing ACC systems for different aims and fidelities. In addition, studies on human-machine interaction are also summarized in this review to provide insights on development of ACC from the perspective of users. At last, challenges and potential directions in this field is discussed, including consideration of vehicle dynamics properties, contradiction between algorithm performance and computation as well as integration of ACC to other intelligent functions on vehicles.


Author(s):  
Michail Makridis ◽  
Konstantinos Mattas ◽  
Daniele Borio ◽  
Raimondo Giuliani ◽  
Biagio Ciuffo

Sign in / Sign up

Export Citation Format

Share Document