Non Metric Model Based on Rough Set Representation

Author(s):  
Yasunori Endo ◽  
◽  
Ayako Heki ◽  
Yukihiro Hamasuna ◽  
◽  
...  

The non metricmodel is a kind of clustering method in which belongingness or the membership grade of each object in each cluster is calculated directly from dissimilarities between objects and in which cluster centers are not used. The clustering field has recently begun to focus on rough set representation instead of fuzzy set representation. Conventional clustering algorithms classify a set of objects into clusters with clear boundaries, that is, one object must belong to one cluster. Many objects in the real world, however, belong to more than one cluster because cluster boundaries overlap each other. Fuzzy set representation of clusters makes it possible for each object to belong to more than one cluster. The fuzzy degree of membership may, however, be too descriptive for interpreting clustering results. Rough set representation handles such cases. Clustering based on rough sets could provide a solution that is less restrictive than conventional clustering and more descriptive than fuzzy clustering. This paper covers two types of Rough-set-based Non Metric model (RNM). One algorithm is the Roughset-based Hard Non Metric model (RHNM) and the other is the Rough-set-based Fuzzy Non Metric model (RFNM). In both algorithms, clusters are represented by rough sets and each cluster consists of lower and upper approximation. The effectiveness of proposed algorithms is evaluated through numerical examples.

Author(s):  
B.K. Tripathy ◽  
Adhir Ghosh

Developing Data Clustering algorithms have been pursued by researchers since the introduction of k-means algorithm (Macqueen 1967; Lloyd 1982). These algorithms were subsequently modified to handle categorical data. In order to handle the situations where objects can have memberships in multiple clusters, fuzzy clustering and rough clustering methods were introduced (Lingras et al 2003, 2004a). There are many extensions of these initial algorithms (Lingras et al 2004b; Lingras 2007; Mitra 2004; Peters 2006, 2007). The MMR algorithm (Parmar et al 2007), its extensions (Tripathy et al 2009, 2011a, 2011b) and the MADE algorithm (Herawan et al 2010) use rough set techniques for clustering. In this chapter, the authors focus on rough set based clustering algorithms and provide a comparative study of all the fuzzy set based and rough set based clustering algorithms in terms of their efficiency. They also present problems for future studies in the direction of the topics covered.


Author(s):  
Yasunori Endo ◽  

The fuzzy non metric model is a kind of clustering method in which belongingness or the membership grade of each datum to each cluster is calculated directly from dissimilarities between data, and cluster centers are not used. In this paper, we first construct a new fuzzy non metric model with entropy regularization. Second, we kernelize the proposed method by introducing kernel functions. Third, we consider pairwise constraints with the proposed method. We then confirm the above methods through some simple numerical examples.


Author(s):  
LI-LI WEI ◽  
WEN-XIU ZHANG

Theories of fuzzy sets and rough sets have emerged as two major mathematical approaches for managing uncertainty that arises from inexact, noisy, or incomplete information. They are generalizations of classical set theory for modelling vagueness and uncertainty. Some integrations of them are expected to develop a model of uncertainty stronger than either. The present work may be considered as an attempt in this line, where we would like to study fuzziness in probabilistic rough set model, to portray probabilistic rough sets by fuzzy sets. First, we show how the concept of variable precision lower and upper approximation of a probabilistic rough set can be generalized from the vantage point of the cuts and strong cuts of a fuzzy set which is determined by the rough membership function. As a result, the characters of the (strong) cut of fuzzy set can be used conveniently to describe the feature of variable precision rough set. Moreover we give a measure of fuzziness, fuzzy entropy, induced by roughness in a probabilistic rough set and make some characterizations of this measure. For three well-known entropy functions, including the Shannon function, we show that the finer the information granulation is, the less the fuzziness (fuzzy entropy) in a rough set is. The superiority of fuzzy entropy to Pawlak's accuracy measure is illustrated with examples. Finally, the fuzzy entropy of a rough classification is defined by the fuzzy entropy of corresponding rough sets. and it is shown that one possible application of it is lies in measuring the inconsistency in a decision table.


Author(s):  
Naohiko Kinoshita ◽  
◽  
Yasunori Endo ◽  

Clustering is one of the most popular unsupervised classification methods. In this paper, we focus on rough clustering methods based on rough-set representation. Rough k-Means (RKM) is one of the rough clustering method proposed by Lingras et al. Outputs of many clustering algorithms, including RKM depend strongly on initial values, so we must evaluate the validity of outputs. In the case of objectivebased clustering algorithms, the objective function is handled as the measure. It is difficult, however to evaluate the output in RKM, which is not objective-based. To solve this problem, we propose new objective-based rough clustering algorithms and verify theirs usefulness through numerical examples.


2021 ◽  
Vol 2021 ◽  
pp. 1-18
Author(s):  
Mohammed Atef ◽  
José Carlos R. Alcantud ◽  
Hussain AlSalman ◽  
Abdu Gumaei

The notions of the fuzzy β -minimal and maximal descriptions were established by Yang et al. (Yang and Hu, 2016 and 2019). Recently, Zhang et al. (Zhang et al. 2019) presented the fuzzy covering via ℐ , T -fuzzy rough set model ( FC ℐ T FRS ), and Jiang et al. (Jiang et al., in 2019) introduced the covering through variable precision ℐ , T -fuzzy rough sets ( CVP ℐ T FRS ). To generalize these models in (Jiang et al., 2019 and Zhang et al. 2019), that is, to improve the lower approximation and reduce the upper approximation, the present paper constructs eight novel models of an FC ℐ T FRS based on fuzzy β -minimal (maximal) descriptions. Characterizations of these models are discussed. Further, eight types of CVP ℐ T FRS are introduced, and we investigate the related properties. Relationships among these models are also proposed. Finally, we illustrate the above study with a numerical example that also describes its practical application.


2011 ◽  
pp. 129-151
Author(s):  
Theresa Beaubouef ◽  
Frederick E Petry

This chapter discusses ways in which rough set theory can enhance databases by allowing for the management of uncertainty. Rough sets can be integrated into an underlying database model, relational or object oriented, and also used in design and querying of databases. Because rough sets are a versatile theory, they can also be combined with other theories. The authors discuss the rough relational database model, the rough object oriented database model, and fuzzy set and intuitionistic set extensions to each of these models. Comparisons and benefits of the various approaches are discussed, illustrating the usefulness and versatility of rough sets for uncertainty management in databases.


Mathematics ◽  
2020 ◽  
Vol 8 (3) ◽  
pp. 432 ◽  
Author(s):  
Vilém Novák

In this paper, we will visit Rough Set Theory and the Alternative Set Theory (AST) and elaborate a few selected concepts of them using the means of higher-order fuzzy logic (this is usually called Fuzzy Type Theory). We will show that the basic notions of rough set theory have already been included in AST. Using fuzzy type theory, we generalize basic concepts of rough set theory and the topological concepts of AST to become the concepts of the fuzzy set theory. We will give mostly syntactic proofs of the main properties and relations among all the considered concepts, thus showing that they are universally valid.


Author(s):  
Yukihiro Hamasuna ◽  
◽  
Yasunori Endo ◽  

This paper proposes entropy-basedL1-regularized possibilistic clustering and a method of sequential cluster extraction from relational data.Sequential cluster extractionmeans that the algorithm extracts cluster one by one. The assignment prototype algorithmis a typical clustering method for relational data. The membership degree of each object to each cluster is calculated directly from dissimilarities between objects. An entropy-basedL1-regularized possibilistic assignment prototype algorithm is proposed first to induce belongingness for a membership grade. An algorithm of sequential cluster extraction based on the proposed method is constructed and the effectiveness of the proposed methods is shown through numerical examples.


Author(s):  
Yasunori Endo ◽  
◽  
Tomoyuki Suzuki ◽  
Naohiko Kinoshita ◽  
Yukihiro Hamasuna ◽  
...  

The fuzzy non-metric model (FNM) is a representative non-hierarchical clustering method, which is very useful because the belongingness or the membership degree of each datum to each cluster can be calculated directly from the dissimilarities between data and the cluster centers are not used. However, the original FNM cannot handle data with uncertainty. In this study, we refer to the data with uncertainty as “uncertain data,” e.g., incomplete data or data that have errors. Previously, a methods was proposed based on the concept of a tolerance vector for handling uncertain data and some clustering methods were constructed according to this concept, e.g. fuzzyc-means for data with tolerance. These methods can handle uncertain data in the framework of optimization. Thus, in the present study, we apply the concept to FNM. First, we propose a new clustering algorithm based on FNM using the concept of tolerance, which we refer to as the fuzzy non-metric model for data with tolerance. Second, we show that the proposed algorithm can handle incomplete data sets. Third, we verify the effectiveness of the proposed algorithm based on comparisons with conventional methods for incomplete data sets in some numerical examples.


2013 ◽  
Vol 2013 ◽  
pp. 1-8 ◽  
Author(s):  
Bin Yang ◽  
Ziqiong Lin ◽  
William Zhu

Rough set theory is an efficient and essential tool for dealing with vagueness and granularity in information systems. Covering-based rough set theory is proposed as a significant generalization of classical rough sets. Matroid theory is a vital structure with high applicability and borrows extensively from linear algebra and graph theory. In this paper, one type of covering-based approximations is studied from the viewpoint of Eulerian matroids. First, we explore the circuits of an Eulerian matroid from the perspective of coverings. Second, this type of covering-based approximations is represented by the circuits of Eulerian matroids. Moreover, the conditions under which the covering-based upper approximation operator is the closure operator of a matroid are presented. Finally, a matroidal structure of covering-based rough sets is constructed. These results show many potential connections between covering-based rough sets and matroids.


Sign in / Sign up

Export Citation Format

Share Document