Novel Device for Inputting Handwriting Trajectory

2001 ◽  
Vol 13 (2) ◽  
pp. 134-139
Author(s):  
Yasuhiro Sato ◽  
◽  
Mitsuru ShingYouuchi ◽  
Toshiyuki Furuta ◽  
Tomohiko Beppu ◽  
...  

A pen-shaped input apparatus for inputting drawings, symbols, characters into a data processing device, such as a computer, is developed. It can trace a handwritten 2-dimensional trajectory using built-in inertial sensors. As sensors, it has 3 accelerometers and 3 gyroscopes. By detecting accelerations about 3 axes and angular rates around them as 6 degrees of freedom, it can represent the 2-dimensional trajectory of the pen tip after additional calculation. Velocity correction enables precise trajectories to be represented with a small integration error. Experimental results demonstrate the feasibility of this device as a handwritten input apparatus.

2004 ◽  
Vol 16 (1) ◽  
pp. 8-16 ◽  
Author(s):  
Kenji Kawashima ◽  
◽  
Takahiro Sasaki ◽  
Toshiyuki Miyata ◽  
Naohiro Nakamura ◽  
...  

After disasters, remote control of construction machinery is often required to ensure the safety of workers during excavation. However, only limited numbers of remote-controlled construction machinery exist, and they are typically larger than conventional machinery. After a disaster, the transportation of such machinery takes additional time and is often troublesome. Therefore, it would be desirable to develop a remote-control system that could easily be installed on ordinary construction machinery. A pneumatic humanoid robot arm is in the process of being developed. While considering the portability issue, a lightweight fiber knitted pneumatic artificial rubber muscle (PARM) was selected as the actuator for the arm. This arm can be installed on all construction machinery models, can be controlled remotely, and has been designed for easy installation and portability. In this research, construction machinery was retrofitted with a pneumatic robot that enables it to be operated remotely. This robot has 6 degrees of freedom and utilizes the fiber knitted PARM. Experiments were conducted to measure the static characteristics of the new PARM and to measure their performance in the remote control of construction machinery. Experimental results showed that the developed system is able to achieve handling two levers of machinery, one that controls back and forward movement and the other that controls the bucket. Experimental results showed that the developed system successfully operated construction machinery remotely.


Author(s):  
Swavik Spiewak ◽  
Curtis Zaiss ◽  
Stephen J. Ludwick

Sub-micron accuracy and precision in measuring unconstrained, spatial motion is pivotal in science and engineering. It imposes stringent requirements on the accuracy, reliability, and invasiveness of sensing devices (including lasers, lidar sensors, or optical scales). While the capabilities of these devices have seen dramatic improvements in the last decades, the needs for sub-micron accuracy, low-invasive sensors greatly outpace the available solutions. The root cause of measurement difficulties is a conflict between the very nature of motion (simultaneous translations and rotations relative to a chosen reference base) and the fundamental requirement of measurement accuracy known as the Abbe principle. Small and accurate Microsystems Technology based inertial sensors (accelerometer and gyroscopes) can alleviate, or at least significantly mitigate, many of the current difficulties. If contained in small Inertial Measurement Units (IMU) and equipped with a wireless signal transmission, they can be placed on or very close to the objects whose motion is to be measured. Furthermore, as long as the IMU, its fixture, and some region of this object around the fixture can be considered as rigid, coordinate transformation rules facilitate converting signals measured by IMU into translations and rotations of any point in this rigid region. Consequently, a virtual 6-DOF sensor can be created. Its dimensions are infinitesimally small, and it can be “placed” anywhere within the above rigid region. In particular, it can be placed such that it is collinear with the displacements of the cutting tool or robot’s end effector, and satisfies the Abbe principle. We present a High Accuracy, Low-Invasive Displacement Sensor (HALIDS) for application in manufacturing and in engineering design. The sensor is capable of measuring simultaneously 6-degrees-of-freedom displacements of objects. Its short term resolution is down to 0.1 nanometer and accuracy better than 1 micron. The sensor can be built small, light and wireless. Results from experimental evaluation of two prototype versions are presented.


2011 ◽  
Vol 200 (1) ◽  
pp. 47-53 ◽  
Author(s):  
Sabine Scheibe ◽  
Mario M. Dorostkar ◽  
Christian Seebacher ◽  
Rainer Uhl ◽  
Frank Lison ◽  
...  

2015 ◽  
Vol 35 (4) ◽  
pp. 341-347 ◽  
Author(s):  
E. Rouhani ◽  
M. J. Nategh

Purpose – The purpose of this paper is to study the workspace and dexterity of a microhexapod which is a 6-degrees of freedom (DOF) parallel compliant manipulator, and also to investigate its dimensional synthesis to maximize the workspace and the global dexterity index at the same time. Microassembly is so essential in the current industry for manufacturing complicated structures. Most of the micromanipulators suffer from their restricted workspace because of using flexure joints compared to the conventional ones. In addition, the controllability of micromanipulators inside the whole workspace is very vital. Thus, it is very important to select the design parameters in a way that not only maximize the workspace but also its global dexterity index. Design/methodology/approach – Microassembly is so essential in the current industry for manufacturing complicated structures. Most of the micromanipulators suffer from their restricted workspace because of using flexure joints compared to the conventional ones. In addition, the controllability of micromanipulators inside the whole workspace is very vital. Thus, it is very important to select the design parameters in a way that not only maximize the workspace but also its global dexterity index. Findings – It has been shown that the proposed procedure for the workspace calculation can considerably speed the required calculations. The optimization results show that a converged-diverged configuration of pods and an increase in the difference between the moving and the stationary platforms’ radii cause the global dexterity index to increase and the workspace to decrease. Originality/value – The proposed algorithm for the workspace analysis is very important, especially when it is an objective function of an optimization problem based on the search method. In addition, using screw theory can simply construct the homogeneous Jacobian matrix. The proposed methodology can be used for any other micromanipulator.


Soil Research ◽  
2002 ◽  
Vol 40 (8) ◽  
pp. 1399 ◽  
Author(s):  
B. L. Henderson ◽  
E. N. Bui

A new pH water to pH CaCl2 calibration curve was derived from data pooled from 2 National Land and Water Resources Audit projects. A total of 70465 observations with both pH in water and pH in CaCl2 were available for statistical analysis. An additive model for pH in CaCl2 was fitted from a smooth function of pH in water created by a smoothing spline with 6 degrees of freedom. This model appeared stable outside the range of the data and performed well (R2 = 96.2, s = 0.24). The additive model for conversion of pHw to pHCa is sigmoidal over the range of pH 2.5 to 10.5 and is similar in shape to earlier models. Using this new model, a look-up table for converting pHw to pHCa was created.


2012 ◽  
Vol 241-244 ◽  
pp. 1737-1740
Author(s):  
Wei Chen

The immune genetic algorithm is a kind of heuristic algorithm which simulates the biological immune system and introduces the genetic operator to its immune operator. Conquering the inherent defects of genetic algorithm that the convergence direction can not be easily controlled so as to result in the prematureness;it is characterized by a better global search and memory ability. The basic principles and solving steps of the immune genetic algorithm are briefly introduced in this paper. The immune genetic algorithm is applied to the survey data processing and experimental results show that this method can be practicably and effectively applied to the survey data processing.


Sign in / Sign up

Export Citation Format

Share Document