Position and Pose Estimation of Camera-Head with Foveated Wide Angle Lens

2003 ◽  
Vol 15 (3) ◽  
pp. 293-303
Author(s):  
Haiquan Yang ◽  
◽  
Nobuyuki Kita ◽  
Yasuyo Kita

A method is proposed to correct the initial position and pose estimates of a camera-head by aligning a 3D model of its surrounding environment with an observed 2D image that is captured by a foveated wideangle lens in the camera. Because of the wide field of view of the lens, the algorithm can converge even when the initial error is large, and the precision of the result is high since the resolution of the fovea of the lens is high.

Author(s):  
S. Troisi ◽  
V. Baiocchi ◽  
S. Del Pizzo ◽  
F. Giannone

Actually complex underground structures and facilities occupy a wide space in our cities, most of them are often unsurveyed; cable duct, drainage system are not exception. Furthermore, several inspection operations are performed in critical air condition, that do not allow or make more difficult a conventional survey. In this scenario a prompt methodology to survey and georeferencing such facilities is often indispensable. <br><br> A visual based approach was proposed in this paper; such methodology provides a 3D model of the environment and the path followed by the camera using the conventional photogrammetric/Structure from motion software tools. The key-role is played by the lens camera; indeed, a fisheye system was employed to obtain a very wide field of view (FOV) and therefore high overlapping among the frames. The camera geometry is in according to a forward motion along the axis camera. Consequently, to avoid instability of bundle adjustment algorithm a preliminary calibration of camera was carried out. A specific case study was reported and the accuracy achieved.


Author(s):  
M. G. Lagally

It has been recognized since the earliest days of crystal growth that kinetic processes of all Kinds control the nature of the growth. As the technology of crystal growth has become ever more refined, with the advent of such atomistic processes as molecular beam epitaxy, chemical vapor deposition, sputter deposition, and plasma enhanced techniques for the creation of “crystals” as little as one or a few atomic layers thick, multilayer structures, and novel materials combinations, the need to understand the mechanisms controlling the growth process is becoming more critical. Unfortunately, available techniques have not lent themselves well to obtaining a truly microscopic picture of such processes. Because of its atomic resolution on the one hand, and the achievable wide field of view on the other (of the order of micrometers) scanning tunneling microscopy (STM) gives us this opportunity. In this talk, we briefly review the types of growth kinetics measurements that can be made using STM. The use of STM for studies of kinetics is one of the more recent applications of what is itself still a very young field.


2020 ◽  
Vol 13 (6) ◽  
pp. 1-9
Author(s):  
XU Hong-gang ◽  
◽  
HAN Bing ◽  
LI Man-li ◽  
MA Hong-tao ◽  
...  

2012 ◽  
Vol 100 (13) ◽  
pp. 133701 ◽  
Author(s):  
Hewei Liu ◽  
Feng Chen ◽  
Qing Yang ◽  
Pubo Qu ◽  
Shengguan He ◽  
...  

Lab on a Chip ◽  
2010 ◽  
Vol 10 (7) ◽  
pp. 824 ◽  
Author(s):  
Ahmet F. Coskun ◽  
Ting-Wei Su ◽  
Aydogan Ozcan

2018 ◽  
Vol 57 (15) ◽  
pp. 4171 ◽  
Author(s):  
Shingo Kashima ◽  
Masashi Hazumi ◽  
Hiroaki Imada ◽  
Nobuhiko Katayama ◽  
Tomotake Matsumura ◽  
...  

Optik ◽  
2016 ◽  
Vol 127 (14) ◽  
pp. 5636-5646 ◽  
Author(s):  
Hyungtae Kim ◽  
Jaehoon Jung ◽  
Joonki Paik

Sign in / Sign up

Export Citation Format

Share Document