scholarly journals Determination of the response surface by strength and vibration parameters of the steam turbine blade

Author(s):  
Oleksiy Vodka ◽  
Ksenia Yevgenivna Potopalska

The work is devoted the definition of the function of limiting the geometric parameters of the steam turbine blade at given external loads. For this, a geometric model of a steam turbine blade was created, consisting of a blade body, a shank, and a shroud. The variable parameters were the angle of rotation of the middle section relative to the center of mass (which varied from 87 degrees to 92 degrees), as well as the length of the blade (varied from 495 mm to 525 mm). At the next stage, a finite element mesh was created. For the constructed model, an ordered finite element mesh was created in the area of the blade. Determined the stress-strain state of the blade during the operating mode. When carrying out the static analysis, an rotation velocity of 50 Hz was used as a load, and at the point of attachment of the disk in the shank, fixed displacement of all directions were used. The equivalent von Mises stresses and displacement in the structure are obtained. The zone of maximum stresses is located at the point where the blade is attached to the shank, but they do not exceed the limits. To determine the vibration characteristics of a steam turbine blade, its modal analysis was carried out taking into account the prestressed state from the action of static loads. The first six eigen modes of a steam turbine blade are obtained under the indicated initial conditions. The eigen frequency corresponding to the first form coincides with the rotational velocity (equal to 49 Hz), and the subsequent ones correspond to the multiplicities, respectively. At the next stage, a series of calculations was carried out to determine the response surface for the given parameters. The response surface for the maximum von Mises stresses and the first 4 modes of natural vibrations are determined. On the basis of the obtained results of studies of oscillations and deformed state of the blades with varying input parameters, it is possible to obtain a constraint for solving the optimization problem.

2012 ◽  
Vol 260-261 ◽  
pp. 368-371
Author(s):  
Lu Wang ◽  
Shun Qiang Ye ◽  
Rui Meng

In response to the vibration fatigue fracture of the steam turbine blade,we construct the 3D model of cracked blade based on the actual crack location,then modal analysis is conducted to the blade with crack and one without crack using the finite element software ANSYS.Thus,we can get the respective natural frequencies and the figure of main vibration modes.The comprasion results show that the existence of the crack can make the natural frequencies of blades drop and the blades have the greatest sway and twisting deformation along the Y axis.These characteristics above can effectively identify the presence of blade cracked. It has crucial meaning for achieving cracked blade online monitoring.


2021 ◽  
Vol 14 (3) ◽  
pp. 134-141
Author(s):  
G. I. Belyaeva ◽  
M. G. Ziganshin

Gas pumping units with gas turbine units (GTU) are widely used in gas transmission systems. In recent decades, GTUs are increasingly used in power generation at thermal power plants. The efficiency and reliability of a gas turbine plant largely depend on the quality of air preparation. Integrated air cleaning devices (KVOU) as part of the air intake duct of the GTU have stages of coarse and fine air purification and rather large dimensions. The possibility of using a battery cyclonefilter with cleaning elements, in which both stages of cleaning are combined, in the design of the KVOU is considered. Numerical studies of the movement of a two-phase flow in a multicyclone, which is a model of the first 2 rows of a serial multicyclone, have been carried out. The first two rows of the serial multicyclone TsB-16 of the Biysk boiler plant, consisting of 16 cyclone elements 245 mm in diameter with a semi-coil gas supply, were taken as the initial geometric model. The geometric model was built using the Gambit preprocessor: a two-dimensional 2D model and a finite element mesh based on square elements were built. The finite element mesh of the numerical model generated in the Gambit program was exported to the solver of the ANSYS Fluent software package. Using the methods of computational hydrodynamics, the nature of the movement of a dusty flow in a battery cyclone with a corridor arrangement of cyclone elements has been investigated, their most effective placement has been determined, which provides the maximum inertial capture of suspended particles, in accordance with which a localization scheme for semi-coil entrances to treatment elements has been determined. In numerical studies, the aerodynamic characteristics of the dispersed flow in the multicyclone body are obtained. In accordance with the results of numerical studies, the efficiency of inertial sedimentation of suspended particles from the flow in the first row of elements was 36%, in the second row — 99%.


Author(s):  
P Cooley

A geometric model is, by definition, an informationally complete representation of a solid object. Such models are processed for various purposes: pictorial display, finite element mesh generation, geometric properties, etc. The ability to define and process representations of solid objects has enormous potential for engineers, provided that software is available which is capable of making routine decisions on such matters as how best to display the model. This paper concentrates on one set of decisions concerning the display and addresses the question of which views of the object are appropriate for a user seeking precise geometric information.


2021 ◽  
Vol 13 (4) ◽  
pp. 168781402110090
Author(s):  
Peiyu He ◽  
Qinrong Qian ◽  
Yun Wang ◽  
Hong Liu ◽  
Erkuo Guo ◽  
...  

Slewing bearings are widely used in industry to provide rotary support and carry heavy load. The load-carrying capacity is one of the most important features of a slewing bearing, and needs to be calculated cautiously. This paper investigates the effect of mesh size on the finite element (FE) analysis of the carrying capacity of slewing bearings. A local finite element contact model of the slewing bearing is firstly established, and verified using Hertz contact theory. The optimal mesh size of finite element model under specified loads is determined by analyzing the maximum contact stress and the contact area. The overall FE model of the slewing bearing is established and strain tests were performed to verify the FE results. The effect of mesh size on the carrying capacity of the slewing bearing is investigated by analyzing the maximum contact load, deformation, and load distribution. This study of finite element mesh size verification provides an important guidance for the accuracy and efficiency of carrying capacity of slewing bearings.


Sign in / Sign up

Export Citation Format

Share Document