Modelling the stochastic tensile behavior and multiple cracking of strain-hardening cementitious composites (SHCCs)

2019 ◽  
Author(s):  
J Li
2018 ◽  
Vol 51 (3) ◽  
Author(s):  
Andrielli Morais de Oliveira ◽  
Flávio de Andrade Silva ◽  
Eduardo de Moraes Rego Fairbairn ◽  
Romildo Dias Toledo Filho

2021 ◽  
Vol 11 (5) ◽  
pp. 2394
Author(s):  
Min-Jae Kim ◽  
Booki Chun ◽  
Hong-Joon Choi ◽  
Wonsik Shin ◽  
Doo-Yeol Yoo

This study investigated the influence of ordinary Portland cement (OPC) and reactive and non-reactive mineral additives on the characteristic microstructure and mechanical performance of ultra-high-performance, strain-hardening cementitious composites (UHP–SHCCs). Nine mixes of cementitious composites were considered composed of reactive and non-reactive materials, such as ground granulated blast furnace slag (GGBS), silica fume (SF), cement kiln dust (CKD), and silica flour. Compressive strength and direct tensile tests were performed on the nine mixes cured for 7 d and 28 d. The test result was analyzed based on microstructural inspections, including thermogravimetry and scanning electron microscopy. The test result and analysis showed that the microstructural property of the UHP–SHCC impacted the compressive strength and the tensile behavior and also influenced the fiber-matrix interaction. Although most of the 7 d cured specimens did not exhibit notable strain-hardening behaviors, the specimen containing the CKD exhibited a tensile strength of 11.6 MPa and a very high strain capacity of 7.5%. All the specimens with OPC, silica flour, GGBS, or SF exhibited considerably improved tensile behavior at 28 d. The specimen with only OPC as a binder could achieve the tensile strength of 11.6 MPa and strain capacity of 6.2%.


2016 ◽  
Vol 711 ◽  
pp. 187-194 ◽  
Author(s):  
Li Ping Guo ◽  
Dong Yi Lei

Five series of strain hardening ultra-high performance cementitious composites (SHUHPCC) incorporated with different types of fibers and hybrid fibers were produced. Three types of fibers (steel fiber, polyvinyl alcohol fiber and polyethylene fiber) were used as mono or hybrid reinforcement in SHUHPCC with the same volume fraction of 2%. The primary strengths, strain hardening and multiple cracking behaviors of hybrid fiber reinforced SHUHPCC under the uniaxial tensile are investigated. Test results show that the SHUHPCC containing PE fibers exhibited higher strain hardening capacity and lower first cracking strength than composites reinforced with mono PVA fiber or mono steel fiber. The composites containing PVA fibers or steel fibers have higher tensile strength and first cracking strength than the composite reinforced by mono PE fiber. Hybridization reinforcement with different fibers is able to make up defects of mono fiber reinforcement for SHUHPCC. The change laws of tensile strength and uniaxial compression strength of SHUHPCC with mono PE fiber and mono PVA fiber are opposite to each other.


2021 ◽  
Vol 9 (4) ◽  
pp. 743-765
Author(s):  
Ruixue Wu ◽  
Tiejun Zhao ◽  
Peng Zhang ◽  
Dingyi Yang ◽  
Miao Liu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document