scholarly journals Capacitive facial activity measurement

ACTA IMEKO ◽  
2014 ◽  
Vol 2 (2) ◽  
pp. 78 ◽  
Author(s):  
Ville Rantanen ◽  
Pekka Kumpulainen ◽  
Hanna Venesvirta ◽  
Jarmo Verho ◽  
Oleg Spakov ◽  
...  

A wide range of applications can benefit from the measurement of facial activity. The current study presents a method that can be used to detect and classify the movements of different parts of the face and the expressions the movements form. The method is based on capacitive measurement of facial movements. It uses principal component analysis on the measured data to identify active areas of the face in offline analysis, and hierarchical clustering as a basis for classifying the movements offline and in real-time. Experiments involving a set of voluntary facial movements were carried out with 10 participants. The results show that the principal component analysis of the measured data could be applied with almost perfect performance to offline mapping of the vertical location of the facial activity of movements such as raising and lowering eyebrows, opening mouth, raising mouth corners, and lowering mouth corners. The presented classification method also performed very well in classifying the same movements both with the offline and the real-time implementations.

2020 ◽  
Vol 1 (2) ◽  
pp. 1-36
Author(s):  
Ranak Roy Chowdhury ◽  
Muhammad Abdullah Adnan ◽  
Rajesh K. Gupta

2021 ◽  
Vol 1192 (1) ◽  
pp. 012029
Author(s):  
L H Mohd Zawawi ◽  
N F Mohamed Azmin ◽  
M F Abd. Wahab ◽  
S I Ibrahim ◽  
M Y Mohd Yunus

Abstract Printer inks are becoming necessary for utilization for wide range of purposes by society in current times with rapid development in technology and digital media area. Thus, forgery and counterfeiting becoming easier for the criminals. It is dangerous as some criminals will misused the technology by mean of addition and adulteration of parts of text or numbers on document as the inks and document can be made as an evidence in the trial court. Thus, the characterization and differentiation of the printed inks in the suspected documents (civil or criminal cases) may provide important information about the authenticity of the printer inks. The focus of this study to differentiate the chemical component of three different types of sample inks by incorporation of FTIR spectrophotometer with principal component analysis. The unique features of the ink samples were unmasked from the score plots of the principal component analysis. Thus, the graphical representation provided by the FTIR spectra with principal component analysis enabled the discrimination certain chemical in the printer inks.


Author(s):  
Andrew Eaton ◽  
Wael Ahmed ◽  
Marwan A. Hassan

Abstract Centrifugal pumps are used in a variety of engineering applications, such as power production, heating, cooling, and water distribution systems. Although centrifugal pumps are considered to be highly reliable hydraulic machines, they are susceptible to a wide range of damage due to several degradation mechanisms, which make them operate away from their best efficiency range. Therefore, evaluating the energy efficiency and performance degradation of pumps is an important consideration to the operation of these systems. In the present study, the hydraulic performance along with the vibration response of an industrial scale centrifugal pump (7.5KW) subjected to different levels of impeller unbalance were experimentally investigated. Extensive testing of pump performance along with vibration measurements were carried. Both time and frequency domain techniques coupled with principal component analysis (PCA) were used in this evaluation. The effect of unbalance on the pump performance was found to be mainly on the shaft power, while no change in the flow rate and the pump head were observed. As the level of unbalance increased, the power required to operate the pump at the designated speed increased by as much as 12%. The PCA found to be a useful tool in comparing the pump vibrations in the field in order to determine the presence of unbalance as well as the degree of damage. The results of this work can be used to evaluate and monitor pump performance under prescribed degradation in order to enhance preventative maintenance programs.


2018 ◽  
Vol 91 (1) ◽  
pp. 79-96 ◽  
Author(s):  
Cindy S. Barrera ◽  
Alfred B. O. Soboyejo ◽  
Katrina Cornish

ABSTRACT Practical statistical models were developed to quantify individual contributions from characteristics of conventional and non-conventional fillers and predict resulting mechanical properties of both hevea and guayule natural rubber composites. Carbon black N330 and four different agro-industrial residues, namely, eggshells, carbon fly ash, processing tomato peels, and guayule bagasse, were used in this study. Filler characteristics were used as explanatory variables in multiple linear regression analyses. Principal component analysis was used to evaluate correlations among explanatory variables based on their correlation matrices and to transform them into a new set of independent variables, which were then used to generate reliable regression models. Surface area, dispersive component of surface energy, carbon black, and waste-derived filler loading were found to have almost equal importance in the prediction of composite properties. However, models developed for ultimate elongation poorly explained variability, indicating the dependence of this property on other variables. Agro-industrial residues could potentially serve as more sustainable fillers for polymer composites than conventional fillers. This new modeling approach for polymer composites allows the performance of a wide range of different waste-derived fillers to be predicted with minimum laboratory work, facilitating the optimization of compound recipes to address specific product requirements.


Sign in / Sign up

Export Citation Format

Share Document