scholarly journals Facial Emotion Detection through Deep Covolutional Neural Networks

2018 ◽  
Vol 15 (3) ◽  
pp. 113
Author(s):  
Aymun Saif Dar ◽  
Sheraz Naseer ◽  
Aihtshan Ali ◽  
Ishmal Sauf ◽  
Muhammad Ahsan
Author(s):  
Ch. Sanjeev Kumar Dash ◽  
Ajit Kumar Behera ◽  
Sarat Chandra Nayak ◽  
Satchidananda Dehuri

Electronics ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 1289
Author(s):  
Navjot Rathour ◽  
Sultan S. Alshamrani ◽  
Rajesh Singh ◽  
Anita Gehlot ◽  
Mamoon Rashid ◽  
...  

Facial emotion recognition (FER) is the procedure of identifying human emotions from facial expressions. It is often difficult to identify the stress and anxiety levels of an individual through the visuals captured from computer vision. However, the technology enhancements on the Internet of Medical Things (IoMT) have yielded impressive results from gathering various forms of emotional and physical health-related data. The novel deep learning (DL) algorithms are allowing to perform application in a resource-constrained edge environment, encouraging data from IoMT devices to be processed locally at the edge. This article presents an IoMT based facial emotion detection and recognition system that has been implemented in real-time by utilizing a small, powerful, and resource-constrained device known as Raspberry-Pi with the assistance of deep convolution neural networks. For this purpose, we have conducted one empirical study on the facial emotions of human beings along with the emotional state of human beings using physiological sensors. It then proposes a model for the detection of emotions in real-time on a resource-constrained device, i.e., Raspberry-Pi, along with a co-processor, i.e., Intel Movidius NCS2. The facial emotion detection test accuracy ranged from 56% to 73% using various models, and the accuracy has become 73% performed very well with the FER 2013 dataset in comparison to the state of art results mentioned as 64% maximum. A t-test is performed for extracting the significant difference in systolic, diastolic blood pressure, and the heart rate of an individual watching three different subjects (angry, happy, and neutral).


Author(s):  
Moutan Mukhopadhyay ◽  
Saurabh Pal ◽  
Anand Nayyar ◽  
Pijush Kanti Dutta Pramanik ◽  
Niloy Dasgupta ◽  
...  

Facial emotion analysis is the basic idea to train the system to understand the different facial expressions of human beings. The Facial expressions are recorded by the use of camera which is attached to user device. Additionally this project will be helpful for the online marketing of the products as it can detect the facial expressions and sentiment of the person. It is the study of people sentiment, opinions and emotions. Sentiment analysis is the method by which information is taken from the facial expressions of people in regard to different situations. The main aim is to read the facial expressions of the human beings using a good resolution camera so that the machine can identify the human sentiments. Convolutional neural network is used as an existing system which is unsupervised neural network to replace that with a supervised mechanism which is called supervised neural network. It can be used in gaming sector, unlock smart phones, automated facial language translation etc.


Sign in / Sign up

Export Citation Format

Share Document