scholarly journals Translation from the data of clinical trials to precision medicine: limitation of the current risk score for predicting coronary thrombosis and major bleeding

2016 ◽  
Vol 8 (9) ◽  
pp. 2376-2378
Author(s):  
Jong-Hwa Ahn ◽  
Jeong Yoon Jang ◽  
Young-Hoon Jeong
2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Shinjo Yada

Abstract Cancer tissue samples obtained via biopsy or surgery were examined for specific gene mutations by genetic testing to inform treatment. Precision medicine, which considers not only the cancer type and location, but also the genetic information, environment, and lifestyle of each patient, can be applied for disease prevention and treatment in individual patients. The number of patient-specific characteristics, including biomarkers, has been increasing with time; these characteristics are highly correlated with outcomes. The number of patients at the beginning of early-phase clinical trials is often limited. Moreover, it is challenging to estimate parameters of models that include baseline characteristics as covariates such as biomarkers. To overcome these issues and promote personalized medicine, we propose a dose-finding method that considers patient background characteristics, including biomarkers, using a model for phase I/II oncology trials. We built a Bayesian neural network with input variables of dose, biomarkers, and interactions between dose and biomarkers and output variables of efficacy outcomes for each patient. We trained the neural network to select the optimal dose based on all background characteristics of a patient. Simulation analysis showed that the probability of selecting the desirable dose was higher using the proposed method than that using the naïve method.


2017 ◽  
Vol 18 (4) ◽  
pp. 393-401 ◽  
Author(s):  
Susanne JH Vijverberg ◽  
Mariëlle W Pijnenburg ◽  
Anke M Hövels ◽  
Gerard H Koppelman ◽  
Anke-Hilse Maitland-van der Zee

2020 ◽  
Vol 16 (10) ◽  
pp. 590-599 ◽  
Author(s):  
Costantino Pitzalis ◽  
Ernest H. S. Choy ◽  
Maya H. Buch

2021 ◽  
Vol 39 (15_suppl) ◽  
pp. 9094-9094
Author(s):  
Shingo Matsumoto ◽  
Takaya Ikeda ◽  
Kiyotaka Yoh ◽  
Akira Sugimoto ◽  
Terufumi Kato ◽  
...  

9094 Background: A variety of oncogene drivers have been identified in NSCLC and molecularly-stratified precision medicine has led to improved survival in advanced NSCLC. Next-generation sequencing (NGS)-based testing is utilized to detect actionable gene alterations; however, the TAT of NGS is often too long to translate into clinical decision making. Thus, rapid multi-gene testing alternatives are needed. Methods: A lung cancer genomic screening project (LC-SCRUM-Asia) capturing clinical outcome was established in 2013 to identify patients with oncogene drivers and to support the development of novel targeted therapies. Since February 2013 to May 2019 (LC-SCRUM-Asia 1st-phase), single gene testing and/or a targeted NGS assay, Oncomine Comprehensive Assay (OCA), were used for the genomic screening. Since June 2019 to December 2020 (2nd-phase), a multi-gene PCR assay (Amoy 9-in-1 test) and a rapid NGS assay (Genexus/Oncomine Precision Assay [OPA]) were also implemented as rapid multi-gene testing. Results: A total of 10667 Japanese NSCLC patients, including 6826 in the 1st-phase and 3841 in the 2nd-phase, were enrolled in the LC-SCRUM-Asia. Success rate for OCA: 93%, for 9-in-1 test: 98%, for Genexus/OPA: 96%. Median TAT for OCA: 21 days, for 9-in-1 test: 3 days, for Genexus/OPA: 4 days. The frequencies of genetic alterations detected in the 1st-/2nd-phase were EGFR: 17/24%, KRAS: 15/16%, HER2 ex20ins: 4/3%, ALK fusions: 3/3%, RET fusions: 3/2%, ROS1 fusions: 3/2%, MET ex14skip: 2/2%, BRAF V600E: 1/1%, NRG1 fusions: 0/0.2% and NTRK3 fusions: 0.05/0.04%. Overall percent agreement of 9-in-1 test compared with OCA for EGFR/KRAS/HER2/BRAF/MET/ALK/ROS1/RET/NTRK3 alterations was 98%, and that of OPA compared with OCA was 95%. The rate of patients who received targeted therapies as 1st-line treatment was significantly elevated in the 2nd-phase compared with the 1st-phase (510/3841 [13%] vs. 567/6826 [8%], p < 0.001). Through the genomic screening, 1410 (37%) and 1269 (18%) candidate patients for clinical trials of KRAS, HER2, BRAF, MET, ALK, ROS1, RET or TRK-targeted drugs were identified in the 2nd-phase and in the 1st-phase, respectively. The rate of patients who were actually enrolled into the genotype-matched clinical trials were also significantly higher in the 2nd-phase than in the 1st-phase (222 [6%] vs. 186 [3%], p < 0.001). In 1st-line treatments for advanced NSCLC patients, the median progression-free survival was 8.5 months (95% CI, 7.7−9.4) in the 2nd-phase (n = 1839) versus 6.1 months (95% CI, 5.9−6.3) in the 1st-phase (n = 4262) (p < 0.001). Conclusions: Both the 9-in-1 test and Genexus/OPA had short TATs (3−4 days), high success rates (96−98%) and good concordance (95−98%) compared with another NGS assay (OCA). These rapid multi-gene assays highly contributed to enabling precision medicine and the development of targeted therapies for advanced NSCLC.


Author(s):  
Jennifer L. Ersek ◽  
Lora J. Black ◽  
Michael A. Thompson ◽  
Edward S. Kim

There has been a rapid uptick in the pace of oncology precision medicine advancements over the past several decades as a result of increasingly sophisticated technology and the ability to study more patients through innovative trial designs. As more precision oncology approaches are developed, the need for precision medicine trials is increasing in the community setting, where most patients with cancer are treated. However, community-based practices, as well as some academic centers, may face unique barriers to implementing precision medicine programs and trials within their communities. Such challenges include understanding the tissue needs of molecular tests (e.g., tumor, blood), identifying which molecular tests are best used and when tissue should be tested, interpreting the test results and determining actionability, understanding the role of genetic counseling and/or follow-up testing, determining clinical trial eligibility, and assessing patient attitudes and financial concerns. The purpose of this article is to provide guidance to community-based oncology practices currently conducting clinical trials who want to expand their research program to include precision medicine trials. Here, we describe the core components of precision medicine programs and offer best practices for successful implementation of precision medicine trials in community-based practices.


Sign in / Sign up

Export Citation Format

Share Document