scholarly journals The structural MRI markers and cognitive decline in prodromal Alzheimer’s disease: a 2-year longitudinal study

2018 ◽  
Vol 8 (10) ◽  
pp. 1004-1019 ◽  
Author(s):  
Hongchun Wei ◽  
◽  
Min Kong ◽  
Chunhua Zhang ◽  
Lina Guan ◽  
...  
Brain ◽  
2018 ◽  
Vol 141 (12) ◽  
pp. 3443-3456 ◽  
Author(s):  
Mara ten Kate ◽  
Ellen Dicks ◽  
Pieter Jelle Visser ◽  
Wiesje M van der Flier ◽  
Charlotte E Teunissen ◽  
...  

Abstract Alzheimer’s disease is a heterogeneous disorder. Understanding the biological basis for this heterogeneity is key for developing personalized medicine. We identified atrophy subtypes in Alzheimer’s disease dementia and tested whether these subtypes are already present in prodromal Alzheimer’s disease and could explain interindividual differences in cognitive decline. First we retrospectively identified atrophy subtypes from structural MRI with a data-driven cluster analysis in three datasets of patients with Alzheimer’s disease dementia: discovery data (dataset 1: n = 299, age = 67 ± 8, 50% female), and two independent external validation datasets (dataset 2: n = 181, age = 66 ± 7, 52% female; dataset 3: n = 227, age = 74 ± 8, 44% female). Subtypes were compared on clinical, cognitive and biological characteristics. Next, we classified prodromal Alzheimer’s disease participants (n = 603, age = 72 ± 8, 43% female) according to the best matching subtype to their atrophy pattern, and we tested whether subtypes showed cognitive decline in specific domains. In all Alzheimer’s disease dementia datasets we consistently identified four atrophy subtypes: (i) medial-temporal predominant atrophy with worst memory and language function, older age, lowest CSF tau levels and highest amount of vascular lesions; (ii) parieto-occipital atrophy with poor executive/attention and visuospatial functioning and high CSF tau; (iii) mild atrophy with best cognitive performance, young age, but highest CSF tau levels; and (iv) diffuse cortical atrophy with intermediate clinical, cognitive and biological features. Prodromal Alzheimer’s disease participants classified into one of these subtypes showed similar subtype characteristics at baseline as Alzheimer’s disease dementia subtypes. Compared across subtypes in prodromal Alzheimer’s disease, the medial-temporal subtype showed fastest decline in memory and language over time; the parieto-occipital subtype declined fastest on executive/attention domain; the diffuse subtype in visuospatial functioning; and the mild subtype showed intermediate decline in all domains. Robust atrophy subtypes exist in Alzheimer’s disease with distinct clinical and biological disease expression. Here we observe that these subtypes can already be detected in prodromal Alzheimer’s disease, and that these may inform on expected trajectories of cognitive decline.


2020 ◽  
Vol 16 (S6) ◽  
Author(s):  
Roos J. Jutten ◽  
Sietske A.M. Sikkes ◽  
Kathryn V. Papp ◽  
Bart N.M. Van Berckel ◽  
Charlotte E. Teunissen ◽  
...  

2016 ◽  
Vol 108 ◽  
pp. 128-135 ◽  
Author(s):  
Stefan J. Teipel ◽  
Enrica Cavedo ◽  
Michel J. Grothe ◽  
Simone Lista ◽  
Samantha Galluzzi ◽  
...  

Author(s):  
M. Senda ◽  
K. Ishii ◽  
K. Ito ◽  
T. Ikeuchi ◽  
H. Matsuda ◽  
...  

BACKGROUND: PET (positron emission tomography) and CSF (cerebrospinal fluid) provide the “ATN” (Amyloid, Tau, Neurodegeneration) classification and play an essential role in early and differential diagnosis of Alzheimer’s disease (AD). OBJECTIVE: Biomarkers were evaluated in a Japanese multicenter study on cognitively unimpaired subjects (CU) and early (E) and late (L) mild cognitive impairment (MCI) patients. MEASUREMENTS: A total of 38 (26 CU, 7 EMCI, 5 LMCI) subjects with the age of 65-84 were enrolled. Amyloid-PET and FDG-PET as well as structural MRI were acquired on all of them, with an additional tau-PET with 18F-flortaucipir on 15 and CSF measurement of Aβ1-42, P-tau, and T-tau on 18 subjects. Positivity of amyloid and tau was determined based on the positive result of either PET or CSF. RESULTS: The amyloid positivity was 13/38, with discordance between PET and CSF in 6/18. Cortical tau deposition quantified with PET was significantly correlated with CSF P-tau, in spite of discordance in the binary positivity between visual PET interpretation and CSF P-tau in 5/8 (PET-/CSF+). Tau was positive in 7/9 amyloid positive and 8/16 amyloid negative subjects who underwent tau measurement, respectively. Overall, a large number of subjects presented quantitative measures and/or visual read that are close to the borderline of binary positivity, which caused, at least partly, the discordance between PET and CSF in amyloid and/or tau. Nine subjects presented either tau or FDG-PET positive while amyloid was negative, suggesting the possibility of non-AD disorders. CONCLUSION: Positivity rate of amyloid and tau, together with their relationship, was consistent with previous reports. Multicenter study on subjects with very mild or no cognitive impairment may need refining the positivity criteria and cutoff level as well as strict quality control of the measurements.


Sign in / Sign up

Export Citation Format

Share Document