scholarly journals Application of three-dimensional image reconstruction technology based on high-resolution CT in pyeloplasty

2021 ◽  
Vol 10 (3) ◽  
pp. 1314-1320
Author(s):  
Xuechao Li ◽  
Jingyun Zhang ◽  
Weiqing Shi ◽  
Tao Yang ◽  
Rongjian Lu ◽  
...  
Author(s):  
An Weigang ◽  
Pan Jinxiao

In order to improve the 3D reconstruction capability of high-resolution fine-grained 3D images, a fast 3D image reconstruction algorithm based on artificial intelligence technology is proposed. The cross-gradient sharpening detection method is used to collect features and extract information from high-resolution fine-grained three-dimensional images, and establish an edge contour feature detection model for high-resolution fine-grained three-dimensional images. Combining the salient feature analysis method and the subspace feature analysis method to cluster and analyze the high-resolution fine-grained three-dimensional image. In the artificial intelligence environment, the saliency of the three-dimensional image is detected and analyzed, and the multi-dimensional segmentation and gray histogram of the high-resolution fine-grained three-dimensional image are reconstructed through the subspace segmentation method. According to the reconstruction results of the gray histogram, fast 3D image reconstruction and image fusion processing are performed. Finally, the accurate detection and recognition of the reconstructed image is realized. The simulation results show that this method has a good effect on 3D image reconstruction, and the time cost of image reconstruction is relatively short. It improves the recognition and feature analysis capabilities of high-resolution fine-grained 3D images, and has good application value in the reconstruction, detection and recognition of high-resolution fine-grained 3D images.


Author(s):  
R. A. Crowther

The reconstruction of a three-dimensional image of a specimen from a set of electron micrographs reduces, under certain assumptions about the imaging process in the microscope, to the mathematical problem of reconstructing a density distribution from a set of its plane projections.In the absence of noise we can formulate a purely geometrical criterion, which, for a general object, fixes the resolution attainable from a given finite number of views in terms of the size of the object. For simplicity we take the ideal case of projections collected by a series of m equally spaced tilts about a single axis.


Sign in / Sign up

Export Citation Format

Share Document