In Vivo Three-Dimensional Determination of Kinematics for Subjects with a Normal Knee or a Unicompartmental or Total Knee Replacement

2001 ◽  
Vol 83 ◽  
pp. 104-115 ◽  
Author(s):  
Douglas Dennis ◽  
Richard Komistek ◽  
Giles Scuderi ◽  
Jean-Noel Argenson ◽  
John Insall ◽  
...  
1988 ◽  
Vol 17 (4) ◽  
pp. 149-156 ◽  
Author(s):  
Peter S Walker

Surfaces for condylar total knee replacement are designed using computergraphics techniques. An average anatomical femoral surface is represented mathematically. Mathematical equations are written to describe normal knee motion and normal laxity. Tibial surfaces are generated by placing the femur stepwise in multiple sequential positions, through a defined three-dimensional motion or laxity path. In addition, a flat tibial surface is defined, to represent the least amount of femoral-tibial conformity in currently-used knee replacements. Elasticity theory is used to calculate the maximum contact stresses at the femoral-tibial contact points. The least stresses are produced with a fixed axis cylindrical motion, while the highest are with a flat tibial surface. A surface based on laxity produces lower stresses than for normal knee motion, and is thought to be acceptable in terms of both freedom of motion and stability. Such a laxity surface is proposed as being suitable for total knee design.


2005 ◽  
Vol &NA; (431) ◽  
pp. 157-165 ◽  
Author(s):  
Philip C Noble ◽  
Michael J Gordon ◽  
Jennifer M Weiss ◽  
Robert N Reddix ◽  
Michael A Conditt ◽  
...  

Thrombosis ◽  
2011 ◽  
Vol 2011 ◽  
pp. 1-6
Author(s):  
Lars C. Borris ◽  
Morten Breindahl ◽  
Michael R. Lassen ◽  
Ákos F. Pap

Prothrombin fragment 1+2 is excreted in urine (uF1+2) as a result of in vivo thrombin generation and can be a marker of coagulation status after an operative procedure. This study compared uF1+2 levels in patients with symptomatic and non-symptomatic venous thromboembolism (VTE) after total knee replacement (TKR) and in event-free sex- and age-matched controls. Significantly higher median uF1+2 levels were seen in the VTE patients on days 1, 3, and the day of venography (mostly day 7) after TKR compared with controls. The uF1+2 levels tended to be high in some patients with symptomatic VTE; however, the discriminatory efficacy of the test could not be evaluated. In conclusion, this study showed that patients with VTE tend to have significantly higher uF1+2 levels compared with patients without events between days 1 and 7 after TKR surgery. Measurement of uF1+2 could provide a simple, non-invasive clinical test to identify patients at risk of VTE.


Author(s):  
Hannah J. Lundberg ◽  
Christopher B. Knowlton ◽  
Diego Orozco ◽  
Markus A. Wimmer

Knowledge of in vivo knee contact forces is essential for evaluating total knee replacement (TKR) designs. This is particularly true for activities other than walking, because there is still a limited understanding of its impact on wear. It has been shown that wear scars from retrieved implants have obvious differences compared with simulator tested components in both size of worn area and in damage mode. The divergence could be related to the omission of other activities than walking when testing components in the simulator. The purpose of this study was to use a parametric numerical model for predicting joint contact forces during stair ascent/descent and chair sitting/rising and compare those to measured forces from a database. We hypothesized that the contact force output of the numeric model would be similar to the measured forces.


1999 ◽  
Author(s):  
Jaime A. Estupiñán ◽  
Donald L. Bartel ◽  
Timothy M. Wright

Abstract A simulation of surface fatigue damage to ultra-high molecular weight polyethylene (UHMWPE) components in total knee replacement is presented. Results of simulations of surface fatigue crack propagation were consistent with observed clinical damage. Extensions of these analyses to incorporate a more realistic description of the constitutive and fracture behavior of UHMWPE and three dimensional geometry are discussed.


Author(s):  
Michael D Stokes ◽  
Brendan C Greene ◽  
Luke W Pietrykowski ◽  
Taylor M Gambon ◽  
Caroline E Bales ◽  
...  

Current total knee replacement designs work to address clinically desired knee stability and range of motion through a balance of retained anatomy and added implant geometry. However, simplified implant geometries such as bearing surfaces, posts, and cams are often used to replace complex ligamentous constraints that are sacrificed during most total knee replacement procedures. This article evaluates a novel total knee replacement design that incorporates synthetic ligaments to enhance the stability of the total knee replacement system. It was hypothesized that by incorporating artificial cruciate ligaments into a total knee replacement design at specific locations and lengths, the stability of the total knee replacement could be significantly altered while maintaining active ranges of motion. The ligament attachment mechanisms used in the design were evaluated using a tensile test, and determined to have a safety factor of three with respect to expected ligamentous loading in vivo. Following initial computational modeling of possible ligament orientations, a physical prototype was constructed to verify the function of the design by performing anterior/posterior drawer tests under physiologic load. Synthetic ligament configurations were found to increase total knee replacement stability up to 94% compared to the no-ligament case, while maintaining total knee replacement flexion range of motion between 0° and 120°, indicating that a total knee replacement that incorporates synthetic ligaments with calibrated location and lengths should be able to significantly enhance and control the kinematic performance of a total knee replacement system.


Sign in / Sign up

Export Citation Format

Share Document