normal knee
Recently Published Documents


TOTAL DOCUMENTS

149
(FIVE YEARS 23)

H-INDEX

28
(FIVE YEARS 2)

2021 ◽  
pp. 028418512110438
Author(s):  
Miho Okuda ◽  
Satoshi Kobayashi ◽  
Kazu Toyooka ◽  
Rikuto Yoshimizu ◽  
Junsuke Nakase ◽  
...  

Background Ligaments and tendons are difficult to differentiate on conventional magnetic resonance imaging (MRI). Ligaments and tendons are different histologically, and tendon graft ligamentization is known to occur after anterior cruciate ligament (ACL) reconstruction. Purpose To quantify and differentiate the ultrashort echo time T2* (UTE-T2*) values of normal knee ligaments and tendons using a 1.5-T MRI scanner. Material and Methods The right knees of 12 healthy volunteers (6 men, 6 women; mean age = 30.8 ± 9.6 years) were scanned using a UTE-T2* sequence and the UTE-T2* values of the proximal, middle, and distal portions of the ACL, posterior cruciate ligament (PCL), and patellar tendon (PT) were evaluated. Two doctors manually drew the regions of interest four times and intra- and inter-observer reliability were evaluated by intraclass correlation coefficients. Results The UTE-T2* values of ACL at the proximal, middle, distal, and mean were 12.0 ± 2.3, 11.3 ± 2.3, 12.3 ± 2.6, and 11.9 ± 2.4 ms, respectively. The UTE-T2* values of the PCL at each site were 6.9 ± 1.5, 9.0 ± 1.8, 8.8 ± 2.4, and 8.3 ± 2.1 ms, respectively. The UTE-T2* values of the PT at each site were 7.1 ± 1.7, 4.3 ± 1.7, 4.3 ± 1.8, and 5.2 ± 2.1 ms, respectively. Both intra- and inter-observer reliability showed high agreement rates. There were significant differences among the ACL mean, PCL mean, and PT mean, with a P value <0.01 in all cases. Conclusion This study confirms that UTE-T2* mapping can quantify the ACL, PCL, and PT, and tendons and ligaments can be differentiated using the UTE-T2* values in normal volunteer knee joints.


2021 ◽  
Vol 8 ◽  
Author(s):  
Pascal-André Vendittoli ◽  
Sagi Martinov ◽  
William G. Blakeney

Introduction: After a better understanding of normal knee anatomy and physiology, the Kinematic Alignment (KA) technique was introduced to improve clinical outcomes of total knee arthroplasty (TKA). The goal of the KA technique is to restore the pre-arthritic constitutional lower limb alignment of the patient. There is, however, a large range of normal knee anatomy. Unusual anatomies may be biomechanically inferior and affect TKA biomechanics and wear patterns. In 2011, the leading author proposed the restricted kinematic alignment (rKA) protocol, setting boundaries to KA for patients with an outlier or atypical knee anatomy.Material and Equipment: rKA aims to reproduce the constitutional knee anatomy of the patient within a safe range. Its fundamentals are based on sound comprehension of lower limb anatomy variation. There are five principles describing rKA: (1) Combined lower limb coronal orientation should be ± 3° of neutral; (2) Joint line orientation coronal alignment should be within ± 5° of neutral; (3) Natural knee's soft tissues tension/ laxities should be preserved/restored; (4) Femoral anatomy preservation is prioritized; (5) The unloaded/most intact knee compartment should be resurfaced and used as the pivot point when anatomical adjustment is required. An algorithm was developed to facilitate the decision-making.Methods: Since ~50% of patients will require anatomic modification to fit within rKA boundaries, rKA is ideally performed with patient-specific instrumentation (PSI), intra-operative computer navigation or robotic assistance. rKA surgical technique is presented in a stepwise manner, following the five principles in the algorithm.Results: rKA produced excellent mid-term clinical results in cemented or cementless TKA. Gait analysis showed that rKA TKA patients had gait patterns that were very close to a non-operated control group, and these kinematics differences translated into significantly better postoperative patient-reported scores than mechanical alignment (MA) TKA cases.Discussion: Aiming to improve the results of MA TKA, rKA protocol offers a satisfactory compromise that recreates patients' anatomy in most cases, omitting the need for extensive corrections and soft tissue releases that are often required with MA. Moreover, it precludes the reproduction of extreme anatomies seen with KA.


Author(s):  
Nele Arnout ◽  
Matthias Verstraete ◽  
Jan Victor ◽  
Johan Bellemans ◽  
Thomas Tampere ◽  
...  

PLoS ONE ◽  
2021 ◽  
Vol 16 (4) ◽  
pp. e0250146
Author(s):  
Marta K. Kosinska ◽  
Gerrit Eichner ◽  
Gerd Schmitz ◽  
Gerhard Liebisch ◽  
Jürgen Steinmeyer

The current limitations in evaluating synovial fluid (SF) components in health and disease and between species are due in part to the lack of data on normal SF, because of low availability of SF from healthy articular joints. Our study aimed to quantify species-dependent differences in phospholipid (PL) profiles of normal knee SF obtained from equine and human donors. Knee SF was obtained during autopsy by arthrocentesis from 15 and 13 joint-healthy human and equine donors, respectively. PL species extracted from SF were quantitated by mass spectrometry whereas ELISA determined apolipoprotein (Apo) B-100. Wilcoxon’s rank sum test with adjustment of scores for tied values was applied followed by Holm´s method to account for multiple testing. Six lipid classes with 89 PL species were quantified, namely phosphatidylcholine, lysophosphatidylcholine, sphingomyelin, phosphatidylethanolamine, plasmalogen, and ceramide. Importantly, equine SF contains about half of the PL content determined in human SF with some characteristic changes in PL composition. Nutritional habits, decreased apolipoprotein levels and altered enzymatic activities may have caused the observed different PL profiles. Our study provides comprehensive quantitative data on PL species levels in normal human and equine knee SF so that research in joint diseases and articular lubrication can be facilitated.


2020 ◽  
Vol 33 (5) ◽  
pp. 811-815
Author(s):  
Maedeh Safari ◽  
Shahrokh Shojaei ◽  
Pedram Tehrani ◽  
Alireza Karimi

BACKGROUND: The main responsibility of the anterior cruciate ligament (ACL) is to restore normal knee kinematics and kinetics. Although so far different research has been carried out to measure or quantify the stresses and strains in the ACL experimentally or numerically, there is still a paucity of knowledge in this regard under different flexion angles of the tibiofemoral knee joint. OBJECTIVE: Understanding the stresses and strains within the ACL under various loading and boundary conditions may have a key asset for the development of an optimal surgical treatment of ACL injury that can better restore normal knee function. This study aimed to calculate the stresses and strains within the ACL under different flexion angles using a patient-specific finite element (FE) model of the human tibiofemoral knee joint. METHODS: A patient-specific FE model of the human tibiofemoral knee joint was established using computed tomography/magnetic resonance imaging data to calculate the stresses and strains in the ACL under different flexion angles of 0, 10, 20, 30, and 45∘. RESULTS: Although the role of the flexion angle in the induced stresses and strains of the ACL was insignificant, the highest stress and strain were observed at the flexion angle of 0∘. The concentration of the stresses and strains regardless of the flexion angles were also located at the proximal end of the ACL, where the clinical reports indicated that most ACL tearing occurs there at the femoral insertion site. CONCLUSIONS: The results have implications not only for understanding the stresses and strains within the ACL under different flexion angles, but also for providing preliminary data for the biomechanical and medical experts in regard of the injuries which may occur to the ACL at relatively higher flexion angles.


Sign in / Sign up

Export Citation Format

Share Document