Centroid Based Classifier With TF – IDF – ICF for Classfication of Student’s Complaint at Appliation E-Complaint in Muhammadiyah University of Sidoarjo
Text mining mengacu pada proses mengambil informasi berkualitas tinggi dari teks. Informasi berkualitas tinggi biasanya diperoleh melalui peramalan pola dan kecenderungan melalui sarana seperti pembelajaran pola statistik. Salah satu kegiatan penting dalam text mining adalah klasifikasi atau kategorisasi teks. Kategorisasi teks sendiri saat ini memiliki berbagai metode antara lain metode K-Nearest Neighbor, Naïve Bayes, dan Centroid Base Classifier, atau decision tree classification.Pada penelitian ini, klasifikasi keluhan mahasiswa dilakukan dengan metode centroid based classifier dan dengan fitur TF-IDF-ICF, Ada lima tahap yang dilakukan untuk mendapatkan hasil klasifikasi. Tahap pengambilan data keluhan kemudian dilanjutkan dengan tahap preprosesing yaitu mempersiapkan data yang tidak terstruktur sehingga siap digunakan untuk proses selanjutnya, kemudian dilanjutkan dengan proses pembagian data, data dibagi menjadi dua macam yaitu data latih dan data uji, tahap selanjutnya yaitu tahap pelatihan untuk menghasilkan model klasifikasi dan tahap terakhir adalah tahap pengujian yaitu menguji model klasifikasi yang telah dibuat pada tahap pelatihan terhadap data uji. Keluhan untuk pengujian akan diambilkan dari database aplikasi e-complaint Universitas Muhammadiyah Sidoarjo. Adapun hasil uji coba menunjukkan bahwa klasifikasi keluhan dengan algoritma centroid based classifier dan dengan fitur TF-IDF-ICF memiliki rata-rata akurasi yang cukup tinggi yaitu 79.5%. Nilai akurasi akan meningkat dengan meningkatnya data latih dan efesiensi sistem semakin menurun dengan meningkatnya data latih.