scholarly journals Multiobjective Imperialist Competitive Algorithm for Solving Nonlinear Constrained Optimization Problems

2019 ◽  
Vol 7 (6) ◽  
pp. 532-549
Author(s):  
Chun-an Liu ◽  
Huamin Jia

Abstract Nonlinear constrained optimization problem (NCOP) has been arisen in a diverse range of sciences such as portfolio, economic management, airspace engineering and intelligence system etc. In this paper, a new multiobjective imperialist competitive algorithm for solving NCOP is proposed. First, we review some existing excellent algorithms for solving NOCP; then, the nonlinear constrained optimization problem is transformed into a biobjective optimization problem. Second, in order to improve the diversity of evolution country swarm, and help the evolution country swarm to approach or land into the feasible region of the search space, three kinds of different methods of colony moving toward their relevant imperialist are given. Thirdly, the new operator for exchanging position of the imperialist and colony is given similar as a recombination operator in genetic algorithm to enrich the exploration and exploitation abilities of the proposed algorithm. Fourth, a local search method is also presented in order to accelerate the convergence speed. At last, the new approach is tested on thirteen well-known NP-hard nonlinear constrained optimization functions, and the experiment evidences suggest that the proposed method is robust, efficient, and generic when solving nonlinear constrained optimization problem. Compared with some other state-of-the-art algorithms, the proposed algorithm has remarkable advantages in terms of the best, mean, and worst objective function value and the standard deviations.

2013 ◽  
Vol 479-480 ◽  
pp. 861-864
Author(s):  
Yi Chih Hsieh ◽  
Peng Sheng You

In this paper, an artificial evolutionary based two-phase approach is proposed for solving the nonlinear constrained optimization problems. In the first phase, an immune based algorithm is applied to solve the nonlinear constrained optimization problem approximately. In the second phase, we present a procedure to improve the solutions obtained by the first phase. Numerical results of two benchmark problems are reported and compared. As shown, the solutions by the new proposed approach are all superior to those best solutions by typical approaches in the literature.


2012 ◽  
Vol 2012 ◽  
pp. 1-7 ◽  
Author(s):  
Alireza Rowhanimanesh ◽  
Sohrab Efati

Evolutionary methods are well-known techniques for solving nonlinear constrained optimization problems. Due to the exploration power of evolution-based optimizers, population usually converges to a region around global optimum after several generations. Although this convergence can be efficiently used to reduce search space, in most of the existing optimization methods, search is still continued over original space and considerable time is wasted for searching ineffective regions. This paper proposes a simple and general approach based on search space reduction to improve the exploitation power of the existing evolutionary methods without adding any significant computational complexity. After a number of generations when enough exploration is performed, search space is reduced to a small subspace around the best individual, and then search is continued over this reduced space. If the space reduction parameters (red_gen and red_factor) are adjusted properly, reduced space will include global optimum. The proposed scheme can help the existing evolutionary methods to find better near-optimal solutions in a shorter time. To demonstrate the power of the new approach, it is applied to a set of benchmark constrained optimization problems and the results are compared with a previous work in the literature.


2014 ◽  
Vol 962-965 ◽  
pp. 2903-2908
Author(s):  
Yun Lian Liu ◽  
Wen Li ◽  
Tie Bin Wu ◽  
Yun Cheng ◽  
Tao Yun Zhou ◽  
...  

An improved multi-objective genetic algorithm is proposed to solve constrained optimization problems. The constrained optimization problem is converted into a multi-objective optimization problem. In the evolution process, our algorithm is based on multi-objective technique, where the population is divided into dominated and non-dominated subpopulation. Arithmetic crossover operator is utilized for the randomly selected individuals from dominated and non-dominated subpopulation, respectively. The crossover operator can lead gradually the individuals to the extreme point and improve the local searching ability. Diversity mutation operator is introduced for non-dominated subpopulation. Through testing the performance of the proposed algorithm on 3 benchmark functions and 1 engineering optimization problems, and comparing with other meta-heuristics, the result of simulation shows that the proposed algorithm has great ability of global search. Keywords: multi-objective optimization;genetic algorithm;constrained optimization problem;engineering application


Author(s):  
Rudy Chocat ◽  
Loïc Brevault ◽  
Mathieu Balesdent ◽  
Sébastien Defoort

The design of complex systems often induces a constrained optimization problem under uncertainty. An adaptation of CMA-ES(λ, μ) optimization algorithm is proposed in order to efficiently handle the constraints in the presence of noise. The update mechanisms of the parametrized distribution used to generate the candidate solutions are modified. The constraint handling method allows to reduce the semi-principal axes of the probable research ellipsoid in the directions violating the constraints. The proposed approach is compared to existing approaches on three analytic optimization problems to highlight the efficiency and the robustness of the algorithm. The proposed method is used to design a two stage solid propulsion launch vehicle.


2016 ◽  
Vol 19 (1) ◽  
pp. 143-167 ◽  
Author(s):  
Andrew T. Barker ◽  
Tyrone Rees ◽  
Martin Stoll

AbstractIn this paper we consider PDE-constrained optimization problems which incorporate anH1regularization control term. We focus on a time-dependent PDE, and consider both distributed and boundary control. The problems we consider include bound constraints on the state, and we use a Moreau-Yosida penalty function to handle this. We propose Krylov solvers and Schur complement preconditioning strategies for the different problems and illustrate their performance with numerical examples.


Sign in / Sign up

Export Citation Format

Share Document