scholarly journals Sources and Sinks of Carbon in Boreal Ecosystems of Interior Alaska : A Review

2021 ◽  
Author(s):  
Thomas A. Douglas ◽  
Christopher A. Hiemstra ◽  
Miriam C. Jones ◽  
Jeffrey R. Arnold

Boreal ecosystems store large quantities of carbon but are increasingly vulnerable to carbon loss due to disturbance and climate warming. The boreal region in Alaska and Canada, largely underlain by discontinuous permafrost, presents a challenging landscape for itemizing carbon sources and sinks in soil and vegetation. The roles of fire, forest succession, and the presence/absence of permafrost on carbon cycle, vegetation, and hydrologic processes have been the focus of multidisciplinary research in boreal ecosystems for the past 20 years. However, projections of a warming future climate, an increase in fire severity and extent, and the potential degradation of permafrost could lead to major landscape and carbon cycle changes over the next 20 to 50 years. To assist land managers in interior Alaska in adapting and managing for potential changes in the carbon cycle, this paper was developed incorporating an overview of the climate, ecosystem processes, vegetation, and soil regimes. The objective is to provide a synthesis of the most current carbon storage estimates and measurements to guide policy and land management decisions on how to best manage carbon sources and sinks. We provide recommendations to address the challenges facing land managers in efforts to manage carbon cycle processes. The results of this study can be used for carbon cycle management in other locations within the boreal biome which encompasses a broad distribution from 45° to 83° north.

Elem Sci Anth ◽  
2014 ◽  
Vol 2 ◽  
Author(s):  
Thomas A. Douglas ◽  
Miriam C. Jones ◽  
Christopher A. Hiemstra ◽  
Jeffrey R. Arnold

Abstract Boreal ecosystems store large quantities of carbon but are increasingly vulnerable to carbon loss due to disturbance and climate warming. The boreal region in Alaska and Canada, largely underlain by discontinuous permafrost, presents a challenging landscape for itemizing carbon sources and sinks in soil and vegetation. The roles of fire, forest succession, and the presence (or absence) of permafrost on carbon cycle, vegetation, and hydrologic processes have been the focus of multidisciplinary research in boreal ecosystems for the past 20 years. However, projections of a warming future climate, an increase in fire severity and extent, and the potential degradation of permafrost could lead to major landscape and carbon cycle changes over the next 20 to 50 years. To assist land managers in interior Alaska in adapting and managing for potential changes in the carbon cycle we developed this review paper by incorporating an overview of the climate, ecosystem processes, vegetation, and soil regimes. Our objective is to provide a synthesis of the most current carbon storage estimates and measurements to guide policy and land management decisions on how to best manage carbon sources and sinks. We surveyed estimates of aboveground and belowground carbon stocks for interior Alaska boreal ecosystems and summarized methane and carbon dioxide fluxes. These data have been converted into similar units to facilitate comparison across ecosystem compartments. We identify potential changes in the carbon cycle with climate change and human disturbance. A novel research question is how compounding disturbances affect carbon sources and sinks associated with boreal ecosystem processes. Finally, we provide recommendations to address the challenges facing land managers in efforts to manage carbon cycle processes. The results of this study can be used for carbon cycle management in other locations within the boreal biome which encompasses a broad distribution from 45° to 83° north.


2011 ◽  
Vol 21 (7) ◽  
pp. 2380-2396 ◽  
Author(s):  
K. Barrett ◽  
A. D. McGuire ◽  
E. E. Hoy ◽  
E. S. Kasischke

2021 ◽  
Vol 41 (19) ◽  
Author(s):  
赵宁,周蕾,庄杰,王永琳,周稳,陈集景,宋珺,丁键浠,迟永刚 ZHAO Ning

2017 ◽  
Author(s):  
Didier Paillard

Abstract. Since the discovery of ice ages in the XIXth century, a central question of climate science has been to understand the respective role of the astronomical forcing and of greenhouse gases, in particular changes in the atmospheric concentration of carbon dioxide. Glacial-interglacial cycles have been shown to be paced by the astronomy with a dominant periodicity of 100 ka over the last million years, and a periodicity of 41 ka between roughly 1 and 3 million years before present (MyrBP). But the role and dynamics of the carbon cycle over the last 4 million years remain poorly understood. In particular, the transition into the Pleistocene about 2.8 MyrBP or the transition towards larger glaciations about 0.8 MyrBP (sometimes refered as the mid-pleistocene transition, or MPT) are not easily explained as direct consequences of the astronomical forcing. Some recent atmospheric CO2 reconstructions suggest slightly higher pCO2 levels before 1 MyrBP and a slow decrease over the last few million years (Bartoli et al., 2011; Seki et al., 2010). But the dynamics and the climatic role of the carbon cycle during the Plio-Pleistocene period remain unclear. Interestingly, the d13C marine records provide some critical information on the evolution of sources and sinks of carbon. In particular, a clear 400-kyr oscillation has been found at many different time periods and appears to be a robust feature of the carbon cycle throughout at least the last 100 Myr (eg. Paillard and Donnadieu, 2014). This oscillation is also visible over the last 4 Myr but its relationship with the eccentricity appears less obvious, with the occurrence of longer cycles at the end of the record, and a periodicity which therefore appears shifted towards 500-kyr (cf. Wang et al., 2004). In the following we present a simple dynamical model that provides an explanation for these carbon cycle variations, and how they relate to the climatic evolution over the last 4 Myr. It also gives an explanation for the lowest pCO2 values observed in the Antarctic ice core around 600–700 kyrBP. More generally, the model predicts a two-step decrease in pCO2 levels associated with the 2.4 Myr modulation of the eccentricity forcing. These two steps occur respectively at the Plio-Pleistocene transition and at the MPT, which strongly suggests that these transitions are astronomicaly forced through the dynamics of the carbon cycle.


Author(s):  
Steven M. Jepsen ◽  
Joshua C. Koch ◽  
Joshua R. Rose ◽  
Clifford I. Voss ◽  
Michelle Ann Walvoord

2009 ◽  
Vol 6 (8) ◽  
pp. 082001 ◽  
Author(s):  
Pep Canadell ◽  
C Lequre ◽  
M Raupach ◽  
P Ciais ◽  
T Conway ◽  
...  

2004 ◽  
Vol 18 (1) ◽  
pp. n/a-n/a ◽  
Author(s):  
Kevin Robert Gurney ◽  
Rachel M. Law ◽  
A. Scott Denning ◽  
Peter J. Rayner ◽  
Bernard C. Pak ◽  
...  

2019 ◽  
Vol 7 (2) ◽  
pp. 134-147
Author(s):  
Hua Li ◽  
Helong Tong ◽  
Xiaoxiang Wang

Abstract As a major component of urban ecological systems, the urban ecological space is an important carbon pool in the urban carbon circulation. Meanwhile, its special recreational function adds to the complexity of its carbon effects. According to the carbon process and effects of the urban ecological recreational system, the Source-Leakage-Sink-Order (SLSO) framework is proposed as the basis of the four subsystems of the system model. Consisting of 63 parameters, the system dynamics model of urban ecological recreational system is constructed by using VENSIM PLE. Then the urban ecological recreational system in Shanghai under different scenarios is simulated, and the carbon sources and sinks of the system as well as the process of carbon effects such as carbon footprints are analyzed and predicted. Research shows that due to the imbalance of the spatial pattern of ecological recreational space, the carbon sink effects of the system are quite limited. The human carbon source is the main contributor of the system’s carbon sources and the carbon footprint deficit is striking. The management ability of ecological recreational space influences the carbon sink potentials of the system. In addition, the maintenance mode of ecological green space plays a non-trivial role in the composition of carbon sources.


Sign in / Sign up

Export Citation Format

Share Document