scholarly journals Genetic Relationships and Reproductive-isolation Mechanisms among the Fejervarya limnocharis Complex from Indonesia (Java) and Other Asian Countries

2007 ◽  
Vol 24 (4) ◽  
pp. 360-375 ◽  
Author(s):  
Tjong Hon Djong ◽  
Mohammed Mafizul Islam ◽  
Midori Nishioka ◽  
Masafumi Matsui ◽  
Hidetoshi Ota ◽  
...  
2019 ◽  
Vol 21 (1) ◽  
pp. 75-80
Author(s):  
Takahiro Tezuka ◽  
Katsuyuki Ichitani ◽  
Yuichi Matsumoto ◽  
Hai He ◽  
Tetsu Kinoshita ◽  
...  

2020 ◽  
Vol 74 (1) ◽  
pp. 477-495
Author(s):  
Jasmine Ono ◽  
Duncan Greig ◽  
Primrose J. Boynton

The genus Saccharomyces is an evolutionary paradox. On the one hand, it is composed of at least eight clearly phylogenetically delineated species; these species are reproductively isolated from each other, and hybrids usually cannot complete their sexual life cycles. On the other hand, Saccharomyces species have a long evolutionary history of hybridization, which has phenotypic consequences for adaptation and domestication. A variety of cellular, ecological, and evolutionary mechanisms are responsible for this partial reproductive isolation among Saccharomyces species. These mechanisms have caused the evolution of diverse Saccharomyces species and hybrids, which occupy a variety of wild and domesticated habitats. In this article, we introduce readers to the mechanisms isolating Saccharomyces species, the circumstances in which reproductive isolation mechanisms are effective and ineffective, and the evolutionary consequences of partial reproductive isolation. We discuss both the evolutionary history of the genus Saccharomyces and the human history of taxonomists and biologists struggling with species concepts in this fascinating genus.


2002 ◽  
Vol 62 (4a) ◽  
pp. 601-608 ◽  
Author(s):  
L. P. de B. MACHADO ◽  
J. P.de CASTRO ◽  
L. MADI-RAVAZZI

In the Drosophila repleta group the establishment of subgroups and complexes made on the basis of morphological and cytological evidences is supported by tests of reproductive isolation. Among species in the repleta group, the buzzatii cluster, due to its polymorphism and polytipism, is an excellent material for ecological and speciation studies. Some interspecific crosses involving Drosophila seriema, Drosophila sp. B, D. koepferae and D. buzzatii strains were completely sterile while others involving strains from these species produced F1 hybrids that did not yield F2. In the present work, data on courtship duration and copula occurrence obtained in the analysis of flies from parental sterile crosses and on spermatozoon mobility observed in F1 hybrids that did not yield F2 are presented. Copula did not occur during one hour of observation and the spermatozoon also did not show mobility at any of the analyzed stages (3, 7, 9 and 10 days old). There was a high variation in courtship average duration and in the percentage of males that courted the females. The reproductive isolation mechanisms indicated by these observations were pre and post-zygotic, as supported by the absence of copula and male sterility. Data obtained also showed the occurrence of different degrees of reproductive compatibility among the strains classified as the same species but from distinct geographic localities.


2019 ◽  
Author(s):  
Jean Mollett ◽  
Naadhirah Munshi ◽  
Craig Symes

Chorister Robin-Chat Cossypha dichroa, a South African forest endemic, and Red-capped Robin-Chat C. natalensis, a widely distributed species in African forest and woodland, are inferred to hybridise in areas of sympatry. DNA was extracted from blood samples of C. dichroa (n = 18), C. natalensis (n = 47), and two phenotypic hybrids. The mitochondrial cytochrome c oxidase I (COI) gene was amplified by PCR and sequenced. Phylogenetic analysis was performed on the sequence data to investigate taxonomic status and putative interspecific hybridisation. Phenotypic hybrids grouped with C. natalensis, suggesting maternal parentage from that species. Intra- and interspecific genetic and geographic distances were compared between C. dichroa and C. natalensis to assess genetic introgression. Seven of the thirteen microsatellite primer pairs developed for C. natalensis cross amplified in C. dichroa. These seven markers were then used for further analysis. STRUCTURE v2.3.4 was used to assign individuals to a particular genetic cluster and determine any admixture. NEWHYBRIDS v1.1 was used to assign hybrid status to samples beyond the F1 generation. Despite the hybridisation events recorded between C. dichroa and C. natalensis they still form two separate clusters as expected, and two genetic clusters (K=2) were identified using STRUCTURE. These two species are proficient vocal mimics and it is likely that reproductive isolation mechanisms are overcome through vocalisations. Genotypic hybrids are evident in the sampled population and hybridisation and backcrossing across a zone of sympatry is occurring. However, hybridisation is expected to have very little evolutionary influence on the integrity of recently diverged species which retain reproductive isolation across a wide region of sympatry through call distinctness.


Insects ◽  
2019 ◽  
Vol 10 (11) ◽  
pp. 381 ◽  
Author(s):  
Zhibo Wang ◽  
Jiahe Bai ◽  
Yongjian Liu ◽  
Hong Li ◽  
Shuai Zhan ◽  
...  

Ectropis grisescens and Ectropis obliqua are sibling species of tea-chewing pests. An investigation of the distribution of tea geometrids was implemented for enhancing controlling efficiency. E. grisescens is distributed across a wider range of tea-producing areas than Ectropis obliqua in China with sympatric distribution found in some areas. In order to explore reproductive isolation mechanisms in co-occurrence areas, hybridization experiments were carried out. Results showed they can mate but produce infertile hybrids. During experiments, the desynchronized development phenomenon was found in the hybridized generation of sibling tea geometrids. Furthermore, transcriptome analysis of those individuals of fast-growing and slow-growing morphs revealed that the insect hormone biosynthesis pathway was enriched in two unsynchronized development groups of hybrid offspring. More importantly, some genes regulating the synthesis of moulting hormone showed significantly up-regulated expression in fast-growing groups. Above all, metabolism of the juvenile hormone and synthesis of the ecdysone pathway were found to be crucially involved in the desynchronized development phenomenon. This research finding contributes to a better understanding of the mechanisms of insect development and reproductive isolation of two sibling species.


2019 ◽  
Author(s):  
Jean Mollett ◽  
Naadhirah Munshi ◽  
Craig Symes

Chorister Robin-Chat Cossypha dichroa, a South African forest endemic, and Red-capped Robin-Chat C. natalensis, a widely distributed species in African forest and woodland, are inferred to hybridise in areas of sympatry. DNA was extracted from blood samples of C. dichroa (n = 18), C. natalensis (n = 47), and two phenotypic hybrids. The mitochondrial cytochrome c oxidase I (COI) gene was amplified by PCR and sequenced. Phylogenetic analysis was performed on the sequence data to investigate taxonomic status and putative interspecific hybridisation. Phenotypic hybrids grouped with C. natalensis, suggesting maternal parentage from that species. Intra- and interspecific genetic and geographic distances were compared between C. dichroa and C. natalensis to assess genetic introgression. Seven of the thirteen microsatellite primer pairs developed for C. natalensis cross amplified in C. dichroa. These seven markers were then used for further analysis. STRUCTURE v2.3.4 was used to assign individuals to a particular genetic cluster and determine any admixture. NEWHYBRIDS v1.1 was used to assign hybrid status to samples beyond the F1 generation. Despite the hybridisation events recorded between C. dichroa and C. natalensis they still form two separate clusters as expected, and two genetic clusters (K=2) were identified using STRUCTURE. These two species are proficient vocal mimics and it is likely that reproductive isolation mechanisms are overcome through vocalisations. Genotypic hybrids are evident in the sampled population and hybridisation and backcrossing across a zone of sympatry is occurring. However, hybridisation is expected to have very little evolutionary influence on the integrity of recently diverged species which retain reproductive isolation across a wide region of sympatry through call distinctness.


Geografie ◽  
2008 ◽  
Vol 113 (2) ◽  
pp. 105-124 ◽  
Author(s):  
Lucie Jungwiertová

The paper tries to explore the socio-economic barriers of new developmental trajectories of regional specialization, innovations or information flows. It is presumed that structures and mechanisms developed originally to support regional specialization or innovations dispersion during the path dependence process operate in a side-effect as socio-economic barriers, in analogy to the evolutionary process of speciation and especially to the concept of reproductive isolation mechanisms. The biological concept of reproductive isolation mechanisms and its way of classification seem to provide some inspiring aspects for identification of socio-economic barriers, their classification and creation of a theoretical framework that is applied to some case studies linked with path dependence process.


Sign in / Sign up

Export Citation Format

Share Document