scholarly journals ROLE OF POLYAMINES IN INHIBITION OF ETHYLENE BIOSYNTHESIS AND THEIR EFFECTS ON RICE ANTHER CULTURE DEVELOPMENT

2016 ◽  
Vol 9 (2) ◽  
pp. 60 ◽  
Author(s):  
Iswari S. Dewi ◽  
Bambang S. Purwoko

The polyamines such as putrescine, spermidine, and spermine were reported to increase green plant regeneration in rice anther culture. Low response of anther culture of rice sub-species indica may be improved with the addition of putrescine in the culture media. Four experiments were conducted to study the role of polyamines in inhibition of ethylene biosynthesis and their effects on rice anther culture development. Anthers of two subspecies of rice, indica (IR64, Krowal, Jatiluhur) and japonica (Taipei 309) were cultured onto media supplemented with putrescine (N6P) and without putrescine (N6). Young<br />panicles containing the anthers at mid-to-late nucleate microspores were cold pretreated at 5 + 2°C and incubated in the dark for 8 days before the anthers were cultured. Results<br />showed that medium without putrescine produced an earlier senescence of indica rice anther than that of japonica. The addition of 10-3 M putrescine into the culture media inhibited ethylene biosynthesis as anther senescence delayed, increased the three polyamines contents, and decreased the ACC content as well as ACC oxydase activity in anther-derived calli. In the anther and anther-derived calli of subspecies indica, the total<br />polyamines content was lower (10.14 nM g-1 anther and 8.48 nM g-1 calli) than that of subspecies japonica (12.61 nM g-1 anther and 10.16 nM g-1 calli), whereas the ethylene production was higher (32.31 nM g-1 anther and 2.48 nM g-1 calli) than the japonica (31.68 nM g-1 anther and 1.76 nM g-1 calli). This study suggests that application of 10-3 M putrescine in anther culture of rice subspecies indica improves androgenesis by inhibiting<br />early senescence of cultured anthers and enhancing embryo or callus formation from microspores.

2016 ◽  
Vol 9 (2) ◽  
pp. 60 ◽  
Author(s):  
Iswari S. Dewi ◽  
Bambang S. Purwoko

The polyamines such as putrescine, spermidine, and spermine were reported to increase green plant regeneration in rice anther culture. Low response of anther culture of rice sub-species indica may be improved with the addition of putrescine in the culture media. Four experiments were conducted to study the role of polyamines in inhibition of ethylene biosynthesis and their effects on rice anther culture development. Anthers of two subspecies of rice, indica (IR64, Krowal, Jatiluhur) and japonica (Taipei 309) were cultured onto media supplemented with putrescine (N6P) and without putrescine (N6). Young<br />panicles containing the anthers at mid-to-late nucleate microspores were cold pretreated at 5 + 2°C and incubated in the dark for 8 days before the anthers were cultured. Results<br />showed that medium without putrescine produced an earlier senescence of indica rice anther than that of japonica. The addition of 10-3 M putrescine into the culture media inhibited ethylene biosynthesis as anther senescence delayed, increased the three polyamines contents, and decreased the ACC content as well as ACC oxydase activity in anther-derived calli. In the anther and anther-derived calli of subspecies indica, the total<br />polyamines content was lower (10.14 nM g-1 anther and 8.48 nM g-1 calli) than that of subspecies japonica (12.61 nM g-1 anther and 10.16 nM g-1 calli), whereas the ethylene production was higher (32.31 nM g-1 anther and 2.48 nM g-1 calli) than the japonica (31.68 nM g-1 anther and 1.76 nM g-1 calli). This study suggests that application of 10-3 M putrescine in anther culture of rice subspecies indica improves androgenesis by inhibiting<br />early senescence of cultured anthers and enhancing embryo or callus formation from microspores.


Plants ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 839
Author(s):  
Jauhar Ali ◽  
Katrina Leslie C. Nicolas ◽  
Shahana Akther ◽  
Azerkhsh Torabi ◽  
Ali Akbar Ebadi ◽  
...  

Anther culture technique is the most viable and efficient method of producing homozygous doubled haploid plants within a short period. However, the practical application of this technology in rice improvement is still limited by various factors that influence culture efficiency. The present study was conducted to determine the effects of two improved anther culture media, Ali-1 (A1) and Ali-2 (A2), a modified N6 medium, to enhance the callus formation and plant regeneration of japonica, indica, and hybrids of indica and japonica cross. The current study demonstrated that genotype and media had a significant impact (p < 0.001) on both callus induction frequency and green plantlet regeneration efficiency. The use of the A1 and A2 medium significantly enhanced callus induction frequency of japonica rice type, Nipponbare, and the hybrids of indica × japonica cross (CXY6, CXY24, and Y2) but not the indica rice type, NSIC Rc480. However, the A1 medium is found superior to the N6 medium as it significantly improved the green plantlet regeneration efficiency of CXY6, CXY24, and Y2 by almost 36%, 118%, and 277%, respectively. Furthermore, it substantially reduced the albino plantlet regeneration of the induced callus in two hybrids (CXY6 and Y2). Therefore, the improved anther culture medium A1 can produce doubled haploid rice plants for indica × japonica, which can be useful in different breeding programs that will enable the speedy development of rice varieties for resource-poor farmers.


2012 ◽  
Vol 12 (2) ◽  
pp. 93 ◽  
Author(s):  
Budi Winarto ◽  
Nurhayati Ansori Mattjik ◽  
Agus Purwito ◽  
Budi Marwoto

Improvement of selected induction culture media on callus induction in anther culture of anthurium and a histologicalstudy on its callus formation were studied at the tissue culture laboratory of the Indonesian Ornamental CropsResearch Institute from February to October 2008. The objectives of the study were to optimize selected media forcallus formation, reveal cell origin of callus derived from anther culture and shoot formation process. Selectedmedia improved in the study were 1) MMS-TBN containing 0,5 mg/l TDZ, 1,0 mg/l BAP and 0,01 mg/l NAA (Winartomedium, WM) and 2) MMS III supplemented with 1,5 mg/l TDZ, 0,75 mg/l BAP and 0,02 mg/l NAA (Winarto andRachmawati medium, WRM). Improvement treatments were carried out by omission and application of 2,4-D in 0.5mg/l and reduction of medium strength of full, half, quarter, one eighth, one sixteenth, and zero strength. Afactorial experiment was arranged using a randomized complete block design with four replications. Results ofthis study indicated that the highest callus induction was clearly established in WRM. The medium stimulatedpotential growth of anther (PGA) up to 81% with 49% of percentage of anther regeneration (PAR) and 2.7 number ofcallus formed per replication (NCF). Significant improvement in callus formation was also recorded by reduction ofmedium strength of WRM to one eighth compared to others. The reduction induced PGA up to 58% with 29% of PARand 1.8 NCF. From histological studies it was well recognized that regenerated callus on half anthers cultured wasoriginated from middle layer cells of anther wall. The morphogenic response of anther wall cells caused primarilyon no androgenesis effect in microspore cells.


Author(s):  
Ankica Kondic-Spika ◽  
Borislav Kobiljski ◽  
Nikola Hristov

The objective of the study was to investigate efficiency of anther culture in the production of spontaneous double haploids from randomly selected heterozygous genotypes of wheat (Triticum aestivum L.). Anthers of 20 F1 wheat combinations were grown in vitro on a modified Potato-2 medium. All of the examined genotypes have shown the ability to produce pollen calluses as well as to regenerate green plants. On average for the whole experiment material, 47.2 calluses were produced per 100 cultured anthers. The green plant regeneration ranged from 0.8 to 13.4 green plants per spike, with an overall mean of 5.8. From the total of 582 regenerated green plants, 47.9% (279) were spontaneous double haploids. The final average yield from the study was 2.8 double haploids per spike.


2021 ◽  
Vol 31 ◽  
pp. 101865
Author(s):  
Zuraida Abd Rahman ◽  
Zulkifli Ahmad Seman ◽  
Ayu Nazreena Othman ◽  
Mohamad Bahagia Ab Ghaffar ◽  
Shahril Ab Razak ◽  
...  

Author(s):  
Sanghamitra Samantaray ◽  
Byomkesh Dash ◽  
Sudhansu Sekhar Bhuyan ◽  
Parmeswaran Chidambaranathan ◽  
Jawahar Lal Katara ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document