The Ichnological Signatures of River- and Wave-Dominated Delta ComplexesDifferentiating Deltaic and Non-Deltaic Shallow Marine Successions, Lower Cretaceous Viking Formation and Upper Cretaceous Dunvegan Formation, West-Central Alberta

Author(s):  
Lorraine Coates ◽  
James A. MacEachern
2018 ◽  
Vol 66 ◽  
pp. 61-112 ◽  
Author(s):  
Jussi Hovikoski ◽  
Gunver K. Pedersen ◽  
Peter Alsen ◽  
Kristian Svennevig ◽  
Henrik Nøhr Hansen ◽  
...  

Kilen, Kronprins Christian Land, contains the thickest and stratigraphically most complete Jurassic and Cretaceous sediment succession in North Greenland. This study revises and formalises the lithostratigraphic framework of these deposits. The work is based on recent extensive stratigraphic field work supplemented by photogeological mapping and biostratigraphic studies, and builds on the earlier stratigraphic work conducted mainly in the 1980s and 1990s. According to the new stratigraphic scheme, the more than 500 m thick Jurassic succession is divided into four formations. The poorly dated Gletscherport Formation comprises lagoonal heterolithic sandstones. The Mågensfjeld and Birkelund Fjeld Formations consist of shallow marine fine-grained sandstones of Bajocian–Bathonian and Kimmeridgian age, respectively. The Kuglelejet Formation comprises mainly shallow marine sandy mudstone and sandstone of Volgian age and includes the mudstone-dominated Splitbæk Member. The Lower Cretaceous interval is estimated to be more than 1500 m thick and is divided into three formations. The Dromledome Formation comprises deep shelf to offshore transition, black mudstones of late Ryazanian to Hauterivian age. It is erosively overlain by unfossiliferous, fluvial and estuarine sandstones of the Lichenryg Formation. The overlying, late Aptian to middle Cenomanian Galadriel Fjeld Formation comprises six members, of which the Tågekyst and Kangoq Ryg Members occur in the Gåseslette area, whereas the Pil, Valmue, Stenbræk and Hondal Members occur in the Kilen Fjelde area. The Galadriel Fjeld Formation is characterised by interbedded mudstones and sandstones from offshore–shoreface environments. The 650 m thick Upper Cretaceous succession is assigned to the Sølverbæk Formation, which is undivided in the Gåseslette area and divided into the Skalbæk and Scaphitesnæse Members in the Kilen Fjelde area. The Sølverbæk Formation is dominated by marine mudstones and sandstonemudstone heteroliths of late Cenomanian to Santonian age. The new lithostratigraphic framework and significant biostratigraphic advances allow a closer correlation of the Mesozoic units between North Greenland and other Arctic basins.


1992 ◽  
Vol 32 (1) ◽  
pp. 231 ◽  
Author(s):  
A.M.G. Moore ◽  
J.B. Willcox ◽  
N.F. Exon ◽  
G.W. O'Brien

The continental margin of western Tasmania is underlain by the southern Otway Basin and the Sorell Basin. The latter lies mainly under the continental slope, but it includes four sub-basins (the King Island, Sandy Cape, Strahan and Port Davey sub-basins) underlying the continental shelf. In general, these depocentres are interpreted to have formed at the 'relieving bends' of a major left-lateral strike-slip fault system, associated with 'southern margin' extension and breakup (seafloor spreading). The sedimentary fill could have commenced in the Jurassic; however, the southernmost sub-basins (Strahan and Port Davey) may be Late Cretaceous and Paleocene, respectively.Maximum sediment thickness is about 4300 m in the southern Otway Basin, 3600 m in the King Island Sub-basin, 5100 m in the Sandy Cape Basin, 6500 m in the Strahan Sub-basin, and 3000 m in the Port Davey Sub-basin. Megasequences in the shelf basins are similar to those in the Otway Basin, and are generally separated by unconformities. There are Lower Cretaceous non-marine conglomerates, sandstones and mudstones, which probably include the undated red beds recovered in two wells, and Upper Cretaceous shallow marine to non-marine conglomerates, sandstones and mudstones. The Cainozoic sequence often commences with a basal conglomerate, and includes Paleocene to Lower Eocene shallow marine sandstones, mudstones and marl, Eocene shallow marine limestones, marls and sandstones, and Oligocene and younger shallow marine marls and limestones.The presence of active source rocks has been demonstrated by the occurrence of free oil near TD in the Cape Sorell-1 well (Strahan Sub-basin), and thermogenic gas from surficial sediments recovered from the upper continental slope and the Sandy Cape Sub-basin. Geohistory maturation modelling of wells and source rock 'kitchens' has shown that the best locations for liquid hydrocarbon entrapment in the southern Otway Basin are in structural positions marginward of the Prawn-1 well location. In such positions, basal Lower Cretaceous source rocks could charge overlying Pretty Hill Sandstone reservoirs. In the King Island Sub-Basin, the sediments encountered by the Clam-1 well are thermally immature, though hydrocarbons generated from within mature Lower Cretaceous rocks in adjacent depocentres could charge traps, providing that suitable migration pathways are present. Whilst no wells have been drilled in the Sandy Cape Sub-basin, basal Cretaceous potential source rocks are considered to have entered the oil window in the early Late Cretaceous, and are now capable of generating gas/condensate. Upper Cretaceous rocks appear to have entered the oil window in the Paleocene. In the Strahan Sub-Basin, mature Cretaceous sediments in the depocentres are available to traps, though considerable migration distances would be required.It is concluded that the west Tasmania margin, which has five strike-slip related depocentres and the potential to have generated and entrapped hydrocarbons, is worthy of further consideration by the exploration industry. The more prospective areas are the southern Otway Basin, and the Sandy Cape and Strahan sub-basins of the Sorell Basin.


1891 ◽  
Vol 8 (10) ◽  
pp. 456-458 ◽  
Author(s):  
A. J. Jukes-Browne

Until recently no outcrop of the Vectian or Lower Greensand was known to occur between Lulworth on the coast of Dorset and the neighbourhood of Devizes in Wiltshire. It was supposed that, with the exception of a small area of Wealden in the Vale of Wardour, the whole of the Lower Cretaceous Series in Dorset and South Wilts was concealed and buried beneath the overlapping Upper Cretaceous strata. A recent examination of this district however has revealed two areas where the Vectian sands emerge from beneath the Gault. One of these has already been indicated in the pages of the Geological Magazine; the other is the subject of the present communication.


Sign in / Sign up

Export Citation Format

Share Document