Controls on Upper Cretaceous (Maastrichtian) Heterozoan Carbonate Platforms Developed on Salt Diapirs, La Popa Basin, Ne Mexico

Author(s):  
KATHERINE A. GILES ◽  
DOMINIC C. DRUKE ◽  
DAVID W. MERCER ◽  
LELA HUNNICUTT-MACK
2001 ◽  
Vol 172 (1) ◽  
pp. 85-98 ◽  
Author(s):  
Philippe Landrein ◽  
Jean-Paul Loreau ◽  
Jean-Jacques Fleury

Abstract The reliability of biostratigraphic correlations in neritic carbonate platforms is often questioned because the benthic fauna on which biozonation is based are particularly sensitive to environmental change. It is crucial to know whether a population change corresponds strictly to a facies change. Conversely, there arise the questions of determining how populations are renewed over time and how new species appear even if facies associations remain unchanged. This is the case with the Gavrovo-Tripolitza zone of Greece, an isolated shallow carbonate platform surrounded by two oceanic domains (Pindos-Olonos Zone and Ionian Zone). The absence or scarcity of faunas generally used in Upper Cretaceous biostratigraphy has led to the use of local biozonation instead, based on faunas endemic to Adriatico-Aegean platforms. The final two biozones based on Rhapydioninidae foraminifera are: - CsB6 (Upper Campanian-Lower Maastrichtian): the "Murciella biozone" is the total range zone of all Rhaphydionininae except for Rhapydionina liburnica; - CsB7 (Upper Maastrichtian): the total range zone of R. Liburnica. The purpose of this paper is to test the biostratigraphic value of the benthic foraminifera by comparing the distribution of the biostratigraphic limits with the distribution of time-surfaces. These time-surfaces are established from sedimentological analysis and sequences stratigraphy. The Upper Cretaceous of the Gavrovo platform is formed by stacked shallowing-upward parasequences which are usually capped by an exposure surface. Most of them were exposed in supratidal environments and dolomitized to a greater or lesser extent. Some underwent continental diagenesis as recorded by karsts, microkarsts and karstic fillings (fig. 5), root traces, alveolar-septal structures, microcodiums, pseudomicrocodiums, pedogenetic pseudomicrokarsts and continental stromatolithic laminations. Although outcrops are great distances apart and located on different structural blocks, they record a major discontinuity within the Maastrichtian. It is characterized by continental exposure, a change in the main type of parasequences, and disruption of the parasequence stacking pattern as evidenced on Fischer plots. In each outcrop, limestones exhibiting continental diagenesis are cut by an erosional surface. This surface is proposed as a local maximum of regression and a transgressive surface. On a peculiar outcrop, the surface marks the inflection point between thinning-upward and thickening-upward parasequence trends on the Fischer plot. In proximal platforms, such a point can be interpreted as corresponding to a local maximum of regression and this surface is also a transgressive surface. The same features occurred in many other outcrops and show that the entire platform was subaerially exposed. Similar episodes of exposure associated with continental diagenesis are reported for Maastrichtian deposits of other Adriatico-Aegean platforms. Continental exposure and associated erosion is currently interpreted as a result of a fall in relative sea level caused either by uplift or by eustatic sea level fall. Successive shallowing up parasequences showing final exposure and continental diagenesis would imply an impossible yo-yo type subsidence. Accordingly, the proposed maximum of regression is thought to be eustatically controlled. Moreover, the maximum of regression caps CsB6 parasequences controlled by allocyclic mechanisms as indicated by similar stacking patterns in different and remote outcrops. This strongly suggests CsB6 sedimentation was eustatically controlled and the relevant maximum of regression is proposed as a time-surface. The distribution of foraminifer populations in the outcrops studied here indicates that the Rhapydionininae of biozone CsB6 do not occur above the maximum of regression. The regressive maximum clearly coincides with the disappearance of foraminifer species whereas the subsequent transgressive episode is characterized by the emergence of just one species. And yet, population renewal is not related to a fundamental change in the platform environment: very shallow water facies association below and above the maximum regression surface are identical. This supports the hypothesis that sea level variations were the cause of faunal extinction and renewal. It is evidenced too that the boundary between the two populations can be used as a time marker. In this case study, the biostratigraphy based on the use of benthic and shallow-water dependent foraminifera is genuinely chronostratigraphic.


2019 ◽  
Vol 23 (5 Part A) ◽  
pp. 2641-2649
Author(s):  
Yiping Wu ◽  
Jianjun Wang ◽  
Qing Wang ◽  
Haowu Li ◽  
Ningning Zhang ◽  
...  

This paper discusses the maturity of source rocks of the Senegal basin through basin simulation, so as to get a better understanding of oil-source correlation. Based on the analysis of pyrolysis chromatography and total organic carbon (TOC) data of core samples taken from 11 wells, the model of Cenomanian-Turonian marine sediment-organic facies was established, and the genetic mechanism of high-quality source rocks was clarified. The results show that source rocks in the Senegal Basin may occur in the Aptian-Albian of Lower Cretaceous and Cenomanian-Turonian of Upper Cretaceous. One is hybrid organic facies in the shallow carbonate platforms in the shelf area and is characterized by moderate to high TOC (<3%) and hidrogen index ? HI, (100-400 mg HC/g). The other is well-preserved marine facies in continental slope to abyssal sea, with high TOC (>3%) and high HI (max 900 mg HC/g TOC). Molecular fossils originating from aryl carotene are the indicator of the existence of euphotic zone in the ancient ocean. The compounds of aryl isoprenes and sulfurous aryl isoprenes are detected in the black shale samples of well DSDP 367. They rooted in photosynthetic green sulfur bacteria and the carbon isotope value of these compounds is higher 10?~15? than those of fossil molecules of algae and cyanobacteria. Two packages of oil-prone source rocks separately occurr in the Aptian-Albian of Lower Cretaceous and Cenomanian-Turonian of Upper Cretaceous. High-graded marine source rocks of the Senegal Basin may occur in a sulfurous, anoxic deep-water environment with sufficient carbon sequestration.


2000 ◽  
Vol 171 (4) ◽  
pp. 451-459 ◽  
Author(s):  
Bernard Peybernes ◽  
Pierre Cugny ◽  
Marie-Josee Fondecave-Wallez

Abstract In the autochthonous unit of Punta-di-Calcina (southern Corsica, France), Upper Cretaceous deposits are reworked (clasts of orbitoid-bearing limestones, Globotruncanidae) within marine lowstand breccias of Danian age, that are overlying Jurassic limestones or granitic basement. These Danian breccias can be dated by means of subautochthonous planktonic foraminifera (Globigerinidae and Hedbergellidae), belonging to the Plb and Plc subzones. The K/T boundary coincides with an ante-Danian submarine erosional surface (major unconformity) underlining the gap of the whole Cretaceous. It is probably impossible to find the iridium-level of the K/T boundary along this surface. This stratigraphic framework suggests the occurrence of main (compressional ?) tectonic movements just before the beginning of the Palaeocene, inducing deep erosions on a Corsican-Sardinian block partially covered at this time by Maastrichtian marine carbonate platforms, now disappeared.


2019 ◽  
Vol 55 (1) ◽  
pp. 241
Author(s):  
Nikolaos Dimopoulos ◽  
Eleftherios Georgoulas ◽  
Savvas Peridis ◽  
George Iliopoulos ◽  
Nikolina Bourli ◽  
...  

Sedimentological studies of the Cretaceous limestones in the central Ionian basin (Amfilochia, Arta as well as Kerasonas areas) indicate that these deposits are composed of calciturbidites interbedded with breccia-microbreccia deposits. In the Amfilochia new cross-section, with a NNW-SSE direction, the lower Cretaceous Vigla limestones and Vigla shales were outcropped for the first time. This section is directed parallel to the paleo Ionian basin axis and the fact of the lateral discontinuity of Vigla limestones and Vigla shales indicate that during the sedimentation of these two Formations there was a restriction along the paleo basin axis, probably due to synsedimentary transfer fault activity. Forty-two (42) samples from Vigla shales were analyzed for their content in CaCO3 and TOC, showed that these sediments present poor to fair hydrocarbon potential. In the Arta new cross-section, with a NE-SW direction, the Upper Cretaceous Senonian deposits showed strong deformation that took place during the compressional regime that affected the Ionian basin after sedimentation. This deformation appears stronger in the western part being close to a major thrust, and thus it is possible that this deformation could be responsible for the high secondary porosity of Upper Cretaceous deposits. Microfacies analysis of these deposits showed in general that deep-sea depositional environments prevailed, nevertheless in a few cases indications for the presence of environments with a shallow character imply the existence of isolated carbonate platforms close to the studied sections. In the studied sections with an E-W direction, no lateral changes were observed in the depositional conditions within the same Formation introducing standard depositional conditions across the paleo basin.


2004 ◽  
Vol 175 (3) ◽  
pp. 273-288 ◽  
Author(s):  
Missoum Herkat

Abstract The Upper Cretaceous sedimentation in the Aurès Mountains occurred in a subsident basin delimited to the south by the Saharan platform and by the Preatlasic high zone to the north. In these series 4 transgressive-regressive megasequences are distinguished, the first one (I) in the late Albian-Cenomanian, the second one (II) in the Turonian, the third one (III) in the Coniacian - Santonian and the fourth one (IV) in the Campanian - Maastrichtian. Each megasequence is made up of three or four sequences, which correspond to third order cycles identified in the eustatic chart of Haq et al. [1987]. In late Albian and lower Turonian periods, during the deposition of basal sequences of the megasequences I and II, the reactivation of basement faults in the Aurès basin occurs consecutively to distension phases, resulting in the formation of rotated blocks. At the same time high eustatic levels are reached according to the global eustatic curve. These processes control the drowning of the carbonate platforms pre-existing to these sequences, and deep ramps progressively form on the tilted block tops. This sedimentary setting generates in the late Albian and lower Turonian series anoxic sequences made up of calcareous and shaly transgressive pelagic intervals. The succeeding sequences lack pelagic facies and are composed of alternate marls / carbonate beds deposited on a homoclinal ramp, indicating a gradual development of shallow open marine conditions, which became progressively restricted upwards. Toward the top of these megasequences, lagunal muds and isolated rudists mounds, surrounded by bioclastic and ooid / pellet banks occur. The Coniacian-Santonian and Campanian-Maastrichtian megasequences are characterized by a shallow ramp sedimentation, essentially marly during the Coniacian, Santonian and Campanian periods, interlayered with some bioclastic / ooid carbonate banks and upwards by sequences mostly homogeneous. The Maastrichtian platform carbonates are composed of bioclastic / ooid sands and were deposited in a ramp-barrier-bank system. Some sequences in the Campanian-Maastrichtian megasequence are condensed or absent due to the accommodation reduction related to a weak subsidence rate period.


Island Arc ◽  
2000 ◽  
Vol 9 (4) ◽  
pp. 611-626 ◽  
Author(s):  
Shigeyuki Suzuki ◽  
Shizuo Takemura ◽  
Graciano P. Yumul ◽  
Sevillo D. David ◽  
Daniel K. Asiedu

10.1029/ft172 ◽  
1989 ◽  
Author(s):  
W. Burleigh Harris ◽  
Vernon J. Hurst ◽  
Paul G. Nystrom ◽  
Lauck W. Ward ◽  
Charles W. Hoffman ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document