scholarly journals GENRE (GPU Elastic-Net REgression): A CUDA-Accelerated Package for Massively Parallel Linear Regression with Elastic-Net Regularization

2020 ◽  
Vol 5 (54) ◽  
pp. 2644
Author(s):  
Christopher Khan ◽  
Brett Byram
2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
ZhenKai Cui ◽  
Cheng Wang ◽  
Jianwei Chen ◽  
Ting He

In order to solve the problems of large number of conditions at inherent frequencies and low prediction accuracy when using multiple multivariate linear regression methods for vibration response prediction alone, an elastic-net regularization method is proposed. Firstly, a multi-input and multioutput linear regression model of the multipoint frequency domain vibration response is trained using historical data at each frequency point. Secondly, the trained model under each frequency point is improved by the elastic regularization. Finally, the model is used in a working situation. The predicted vibration response on the experimental dataset of cylindrical shell acoustic vibration showed that the improvement of the multivariate regression vibration response prediction model by elastic regularization can better improve the accuracy and reduce the large number of conditions at some frequencies.


Author(s):  
Pascalis Kadaro Matthew ◽  
Abubakar Yahaya

<p>Some few decades ago, penalized regression techniques for linear regression have been developed specifically to reduce the flaws inherent in the prediction accuracy of the classical ordinary least squares (OLS) regression technique. In this paper, we used a diabetes data set obtained from previous literature to compare three of these well-known techniques, namely: Least Absolute Shrinkage Selection Operator (LASSO), Elastic Net and Correlation Adjusted Elastic Net (CAEN). After thorough analysis, it was observed that CAEN generated a less complex model.</p>


Sign in / Sign up

Export Citation Format

Share Document