Contact Residue for Simultaneous Removal of Vehicle’s Frequency and Surface Roughness in Scanning Bridge Frequencies Using Two Connected Vehicles

Author(s):  
Y. B. Yang ◽  
X. Q. Mo ◽  
K. Shi ◽  
Z. L. Wang ◽  
H. Xu ◽  
...  

Two factors are critical to the effectiveness of the vehicle scanning method for bridge frequencies. One is the frequency of the test vehicle itself. This can be eliminated by using the vehicle–bridge contact point response calculated from the vehicle response. The other is the surface roughness of the bridge, which can be removed by using the residual response of two connected vehicles. In this paper, it is demonstrated for the first time that both vehicle’s frequency and surface roughness can be simultaneously eliminated using the contact residue of two connected vehicles. Theoretically, a formulation is presented for both the contact response and residues. In the numerical study, the contact response is demonstrated to outperform the vehicle response as more bridge frequencies can be identified, while the contact residue is verified to work well for various surface roughnesses, vehicle spacings, and bridge damping ratios. For damped bridges with rough surfaces, the contact residue enables us to extract the first three bridge frequencies.

2021 ◽  
Vol 11 (15) ◽  
pp. 7028
Author(s):  
Ibrahim Hashlamon ◽  
Ehsan Nikbakht ◽  
Ameen Topa ◽  
Ahmed Elhattab

Indirect bridge health monitoring is conducted by running an instrumented vehicle over a bridge, where the vehicle serves as a source of excitation and as a signal receiver; however, it is also important to investigate the response of the instrumented vehicle while it is in a stationary position while the bridge is excited by other source of excitation. In this paper, a numerical model of a stationary vehicle parked on a bridge excited by another moving vehicle is developed. Both stationary and moving vehicles are modeled as spring–mass single-degree-of-freedom systems. The bridges are simply supported and are modeled as 1D beam elements. It is known that the stationary vehicle response is different from the true bridge response at the same location. This paper investigates the effectiveness of contact-point response in reflecting the true response of the bridge. The stationary vehicle response is obtained from the numerical model, and its contact-point response is calculated by MATLAB. The contact-point response of the stationary vehicle is investigated under various conditions. These conditions include different vehicle frequencies, damped and undamped conditions, different locations of the stationary vehicle, road roughness effects, different moving vehicle speeds and masses, and a longer span for the bridge. In the time domain, the discrepancy of the stationary vehicle response with the true bridge response is clear, while the contact-point response agrees well with the true bridge response. The contact-point response could detect the first, second, and third modes of frequency clearly, unlike the stationary vehicle response spectra.


Micromachines ◽  
2021 ◽  
Vol 12 (4) ◽  
pp. 460
Author(s):  
Canbin Zhang ◽  
Chifai Cheung ◽  
Benjamin Bulla ◽  
Chenyang Zhao

Ultrasonic vibration-assisted cutting (UVAC) has been regarded as a promising technology to machine difficult-to-machine materials such as tungsten carbide, optical glass, and hardened steel in order to achieve superfinished surfaces. To increase vibration stability to achieve optical surface quality of a workpiece, a high-frequency ultrasonic vibration-assisted cutting system with a vibration frequency of about 104 kHz is used to machine spherical optical steel moulds. A series of experiments are conducted to investigate the effect of machining parameters on the surface roughness of the workpiece including nominal cutting speed, feed rate, tool nose radius, vibration amplitude, and cutting geometry. This research takes into account the effects of the constantly changing contact point on the tool edge with the workpiece induced by the cutting geometry when machining a spherical steel mould. The surface morphology and surface roughness at different regions on the machined mould, with slope degrees (SDs) of 0°, 5°, 10°, and 15°, were measured and analysed. The experimental results show that the arithmetic roughness Sa of the workpiece increases gradually with increasing slope degree. By using optimised cutting parameters, a constant surface roughness Sa of 3 nm to 4 nm at different slope degrees was achieved by the applied high-frequency UVAC technique. This study provides guidance for ultra-precision machining of steel moulds with great variation in slope degree in the pursuit of optical quality on the whole surface.


Materials ◽  
2021 ◽  
Vol 14 (17) ◽  
pp. 4855
Author(s):  
Maodan Yuan ◽  
Anbang Dai ◽  
Lin Liao ◽  
Yan Chen ◽  
Xuanrong Ji

Ultrasonic is one of the well-known methods for surface roughness measurement, but small roughness will only lead to a subtle variation of transmission or reflection. To explore sensitive techniques for surfaces with small roughness, nonlinear ultrasonic measurement in through-transmission and pulse-echo modes was proposed and studied based on an effective unit-cell finite element (FE) model. Higher harmonic generation in solids was realized by applying the Murnaghan hyperelastic material model. This FE model was verified by comparing the absolute value of the nonlinearity parameter with the analytical solution. Then, random surfaces with different roughness values ranging from 0 μm to 200 μm were repeatedly generated and studied in the two modes. The through-transmission mode is very suitable to measure the surfaces with roughness as small as 3% of the wavelength. The pulse-echo mode is sensitive and effective to measure the surface roughness ranging from 0.78% to 5.47% of the wavelength. This study offers a potential nondestructive testing and monitoring method for the interfaces or inner surfaces of the in-service structures.


Author(s):  
Y. B. Yang ◽  
B. Q. Wang ◽  
Z. L. Wang ◽  
K. Shi ◽  
H. Xu ◽  
...  

In this study, a new, effective procedure is proposed for identifying the surface roughness from the responses recorded of two connected test vehicles moving over the bridge. Central to this study is the proposal of a simple static correlation formula for relating the dynamic deflections of the two vehicles’s contact points on the bridge, via the displacement influence lines (DILs). With the aid of this relation, the roughness formula for estimating the bridge surface profile is derived using the responses of the leading and following vehicles. It does not require any prior knowledge of the dynamic properties of the bridge. The efficacy of the proposed procedure is validated for both the simple and three-span continuous beams by the finite element method (FEM). Also, a parametric study is conducted for various physical properties of the test vehicles. It is confirmed that the roughness profiles back-calculated from the proposed formula agree excellently with the assumed ones for both the simple and continuous beams. For use in practice, the two connected test vehicles should not be designed too heavy and not to move at too fast speeds, in order to reduce the impact on the bridge.


Author(s):  
Kalle Karttunen ◽  
Elena Kabo ◽  
Anders Ekberg

Optimisation of railway track maintenance requires knowledge of how a deteriorated track geometry will affect subsequent loading and damage of the track. This is the scope of the current study where, in particular, the influence on track shift forces and rolling contact fatigue is investigated through numerical simulations. To this end, track geometries are obtained from field measurements. Lateral irregularities are extracted and scaled to represent different levels of geometry deterioration. Multibody simulations of dynamic train–track interaction featuring two freight wagon types are performed under different operational conditions. Track shift forces and rolling contact fatigue damage are further evaluated from simulation results. It is found that track shift forces tend to follow a normal distribution for moderate levels of lateral track geometry irregularities, and that an approximate linear relationship between standard deviations of lateral irregularities and track shift forces can be established. The relation between lateral track irregularity magnitude and rolling contact fatigue is more complex. Increasing levels of lateral irregularities will decrease the fraction of curve length affected by rolling contact fatigue for sharp curves, whereas for shallow curves it increases. As detailed in the article, this is caused by the lateral movement of the contact point as imposed by the track irregularities. Furthermore, the influence of wheel/rail friction and wear is investigated.


1999 ◽  
Vol 10 (04) ◽  
pp. 645-657 ◽  
Author(s):  
K. MALARZ ◽  
A. Z. MAKSYMOWICZ

The random deposition model must be enhanced to reflect the variety of surface roughness due to some material characteristics of the film growing by vacuum deposition or sputtering. The essence of the computer simulation in this case is to account for possible surface migration of atoms just after the deposition, in connection with the binding energy between atoms (as the mechanism provoking the diffusion) and/or diffusion energy barrier. The interplay of these two factors leads to different morphologies of the growing surfaces, from flat and smooth ones to rough and spiky ones. In this paper, we extended our earlier calculation by applying an extra diffusion barrier at the edges of terrace-like structures, known as the Ehrlich–Schwoebel barrier. It is experimentally observed that atoms avoid descending when the terrace edge is approached, and these barriers mimic this tendency. Results of our Monte Carlo computer simulations are discussed in terms of surface roughness, and compared with other model calculations and some experiments from literature. The power law of the surface roughness σ against film thickness t was confirmed. The nonzero minimum value of the growth exponent β near 0.2 was obtained which is due to the limited range of the surface diffusion and the Ehrlich–Schwoebel barrier. Observations for different diffusion ranges are also discussed. The results are also confirimed with some deterministic growth models.


Author(s):  
K-S Yang ◽  
I-Y Chen ◽  
K-H Chien ◽  
C-C Wang

This study numerically investigates the performance of micronozzle/diffuser pump subject to the influence of frequency, opening angle, geometric dimension, and amplitude. For the effect of geometric dimension, the effect of chamber length is far more important than that of chamber depth because it can provide much more effective pumping volume. It is found that the net flowrate of a micropump increased with pumping frequency and opening angle. However, a level-off phenomenon of the net flowrate versus amplitude is seen at amplitudes nearby 150–200 μm and at an opening angle above 10°. This phenomenon is associated with two factors that compensate with each other. One is the free jet flow from the outlet that overturns and blocks the flow from the inlet. The other is the reduction of the strength of jet flow at a larger amplitude owing to effective increase of cross-sectional area.


2006 ◽  
Vol 129 (1) ◽  
pp. 126-134 ◽  
Author(s):  
Yung-Chun Lee ◽  
Chun-Ming Chen ◽  
Chun-Ying Wu

This paper presents an effective and low-cost method for fabricating spherical and aspheric microlenses based on excimer laser LIGA-like processes. It is based on a newly developed excimer laser micromachining technique that can accurately machine a 3D microstructure with a predetermined continuous surface profile. The method is called the planetary scanning method since it is based on a combination of sample rotation and revolution and a concept of laser machining probability. Spherical and aspheric microlenses with precise and smooth surface profiles are fabricated by direct laser machining on polymer materials. Laser-machined microlenses are replicated by electroforming to obtain inverse metal molds. Finally, plastic microlenses are replicated from these metal molds using hot embossing method. The profile accuracy and surface roughness of the produced microlenses at each stage have been measured and monitored. The average surface profile accuracy is better than 1μm and average surface roughness is less than 10nm. Optical performance of the fabricated microlenses is evaluated by measuring the light intensity distribution at the focal plane and the focal length. Experimental data show that the characteristics of fabricated spherical and aspheric microlenses are well matched to the theoretical predictions, which demonstrates the controllability and accuracy of this micromachining process. Potential applications and further developments will be addressed.


Sign in / Sign up

Export Citation Format

Share Document