Power Flow Optimization for an Offshore Multi-energy System

2019 ◽  
Vol 93 (sp1) ◽  
pp. 585
Author(s):  
Bo Qu ◽  
Ming Zhong ◽  
Hongjie Jia ◽  
Huaguang Yan ◽  
Jian Zhang ◽  
...  
2020 ◽  
Vol 12 (12) ◽  
pp. 31-43
Author(s):  
Tatiana A. VASKOVSKAYA ◽  
◽  
Boris A. KLUS ◽  

The development of energy storage systems allows us to consider their usage for load profile leveling during operational planning on electricity markets. The paper proposes and analyses an application of an energy storage model to the electricity market in Russia with the focus on the day ahead market. We consider bidding, energy storage constraints for an optimal power flow problem, and locational marginal pricing. We show that the largest effect for the market and for the energy storage system would be gained by integration of the energy storage model into the market’s optimization models. The proposed theory has been tested on the optimal power flow model of the day ahead market in Russia of 10000-node Unified Energy System. It is shown that energy storage systems are in demand with a wide range of efficiencies and cycle costs.


2021 ◽  
Vol 1754 (1) ◽  
pp. 012026
Author(s):  
Fan Yang ◽  
Kai Chen ◽  
Shaofeng Qian ◽  
JiangYang Zhan ◽  
Rui Yu ◽  
...  

2020 ◽  
Vol 48 (12-13) ◽  
pp. 1362-1377
Author(s):  
Qais Alsafasfeh ◽  
Omar A. Saraereh ◽  
Moath Alsafasfeh ◽  
Ayman Maqableh ◽  
Imran Khan ◽  
...  

Energies ◽  
2021 ◽  
Vol 14 (3) ◽  
pp. 600
Author(s):  
Bin Ouyang ◽  
Lu Qu ◽  
Qiyang Liu ◽  
Baoye Tian ◽  
Zhichang Yuan ◽  
...  

Due to the coupling of different energy systems, optimization of different energy complementarities, and the realization of the highest overall energy utilization rate and environmental friendliness of the energy system, distributed energy system has become an important way to build a clean and low-carbon energy system. However, the complex topological structure of the system and too many coupling devices bring more uncertain factors to the system which the calculation of the interval power flow of distributed energy system becomes the key problem to be solved urgently. Affine power flow calculation is considered as an important solution to solve uncertain steady power flow problems. In this paper, the distributed energy system coupled with cold, heat, and electricity is taken as the research object, the influence of different uncertain factors such as photovoltaic and wind power output is comprehensively considered, and affine algorithm is adopted to calculate the system power flow of the distributed energy system under high and low load conditions. The results show that the system has larger operating space, more stable bus voltage and more flexible pipeline flow under low load condition than under high load condition. The calculation results of the interval power flow of distributed energy systems can provide theoretical basis and data support for the stability analysis and optimal operation of distributed energy systems.


2011 ◽  
Vol 44 (1) ◽  
pp. 10481-10486 ◽  
Author(s):  
Javad Lavei ◽  
Anders Rantzer ◽  
Stephen Low

Sign in / Sign up

Export Citation Format

Share Document