scholarly journals Numerical Solutions of Two-Dimensional Vorticity Transport Equation Using Crank-Nicolson Method

2021 ◽  
Vol 19 (2) ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 3421
Author(s):  
Cheng-Yu Ku ◽  
Li-Dan Hong ◽  
Chih-Yu Liu ◽  
Jing-En Xiao ◽  
Wei-Po Huang

In this study, we developed a novel boundary-type meshless approach for dealing with two-dimensional transient flows in heterogeneous layered porous media. The novelty of the proposed method is that we derived the Trefftz space–time basis function for the two-dimensional diffusion equation in layered porous media in the space–time domain. The continuity conditions at the interface of the subdomains were satisfied in terms of the domain decomposition method. Numerical solutions were approximated based on the superposition principle utilizing the space–time basis functions of the governing equation. Using the space–time collocation scheme, the numerical solutions of the problem were solved with boundary and initial data assigned on the space–time boundaries, which combined spatial and temporal discretizations in the space–time manifold. Accordingly, the transient flows through the heterogeneous layered porous media in the space–time domain could be solved without using a time-marching scheme. Numerical examples and a convergence analysis were carried out to validate the accuracy and the stability of the method. The results illustrate that an excellent agreement with the analytical solution was obtained. Additionally, the proposed method was relatively simple because we only needed to deal with the boundary data, even for the problems in the heterogeneous layered porous media. Finally, when compared with the conventional time-marching scheme, highly accurate solutions were obtained and the error accumulation from the time-marching scheme was avoided.


Author(s):  
Robert L. McMasters ◽  
Filippo de Monte ◽  
James V. Beck ◽  
Donald E. Amos

This paper provides a solution for two-dimensional heating over a rectangular region on a homogeneous plate. It has application to verification of numerical conduction codes as well as direct application for heating and cooling of electronic equipment. Additionally, it can be applied as a direct solution for the inverse heat conduction problem, most notably used in thermal protection systems for re-entry vehicles. The solutions used in this work are generated using Green’s functions. Two approaches are used which provide solutions for either semi-infinite plates or finite plates with isothermal conditions which are located a long distance from the heating. The methods are both efficient numerically and have extreme accuracy, which can be used to provide additional solution verification. The solutions have components that are shown to have physical significance. The extremely precise nature of analytical solutions allows them to be used as prime standards for their respective transient conduction cases. This extreme precision also allows an accurate calculation of heat flux by finite differences between two points of very close proximity which would not be possible with numerical solutions. This is particularly useful near heated surfaces and near corners. Similarly, sensitivity coefficients for parameter estimation problems can be calculated with extreme precision using this same technique. Another contribution of these solutions is the insight that they can bring. Important dimensionless groups are identified and their influence can be more readily seen than with numerical results. For linear problems, basic heating elements on plates, for example, can be solved to aid in understanding more complex cases. Furthermore these basic solutions can be superimposed both in time and space to obtain solutions for numerous other problems. This paper provides an analytical two-dimensional, transient solution for heating over a rectangular region on a homogeneous square plate. Several methods are available for the solution of such problems. One of the most common is the separation of variables (SOV) method. In the standard implementation of the SOV method, convergence can be slow and accuracy lacking. Another method of generating a solution to this problem makes use of time-partitioning which can produce accurate results. However, numerical integration may be required in these cases, which, in some ways, negates the advantages offered by the analytical solutions. The method given herein requires no numerical integration; it also exhibits exponential series convergence and can provide excellent accuracy. The procedure involves the derivation of previously-unknown simpler forms for the summations, in some cases by virtue of the use of algebraic components. Also, a mathematical identity given in this paper can be used for a variety of related problems.


Author(s):  
Anthony M.J Davis ◽  
Stefan G Llewellyn Smith

Motivated by problems involving diffusion through small gaps, we revisit two-dimensional eigenvalue problems with localized perturbations to Neumann boundary conditions. We recover the known result that the gravest eigenvalue is O (|ln  ϵ | −1 ), where ϵ is the ratio of the size of the hole to the length-scale of the domain, and provide a simple and constructive approach for summing the inverse logarithm terms and obtaining further corrections. Comparisons with numerical solutions obtained for special geometries, both for the Dirichlet ‘patch problem’ where the perturbation to the boundary consists of a different boundary condition and for the gap problem, confirm that this approach is a simple way of obtaining an accurate value for the gravest eigenvalue and hence the long-term outcome of the underlying diffusion problem.


1973 ◽  
Vol 95 (2) ◽  
pp. 268-270 ◽  
Author(s):  
P. M. Beckett

Steady two-dimensional laminar film condensation is investigated when the saturated vapor has the Falkner–Skan mainstream. Numerical solutions and approximate models are discussed with reference to other published work.


2011 ◽  
Vol 271-273 ◽  
pp. 791-796
Author(s):  
Kun Qu ◽  
Yue Zhang

In this paper we prove the global existence for the two-dimensional Euler equations in the critical Besov space. Making use of a new estimate of transport equation and Littlewood-Paley theory, we get the global existence result.


Sign in / Sign up

Export Citation Format

Share Document