scholarly journals Quasi-posinormal operators

2010 ◽  
Vol 7 (3) ◽  
pp. 1282-1287
Author(s):  
Baghdad Science Journal

In this paper, we introduce a class of operators on a Hilbert space namely quasi-posinormal operators that contain properly the classes of normal operator, hyponormal operators, M–hyponormal operators, dominant operators and posinormal operators . We study some basic properties of these operators .Also we are looking at the relationship between invertibility operator and quasi-posinormal operator .

Filomat ◽  
2019 ◽  
Vol 33 (15) ◽  
pp. 4845-4854
Author(s):  
Muneo Chō ◽  
Dijana Mosic ◽  
Biljana Nacevska-Nastovska ◽  
Taiga Saito

In this paper, we introduce a square hyponormal operator as a bounded linear operator T on a complex Hilbert space H such that T2 is a hyponormal operator, and we investigate some basic properties of this operator. Under the hypothesis ?(T) ? (-?(T)) ? {0}, we study spectral properties of a square hyponormal operator. In particular, we show that if z and w are distinct eigen-values of T and x,y ? H are corresponding eigen-vectors, respectively, then ?x,y? = 0. Also, we define nth hyponormal operators and present some properties of this kind of operators.


2021 ◽  
Vol 18 (3) ◽  
Author(s):  
Pietro Aiena ◽  
Fabio Burderi ◽  
Salvatore Triolo

AbstractIn this paper, we study some local spectral properties of operators having form JTJ, where J is a conjugation on a Hilbert space H and $$T\in L(H)$$ T ∈ L ( H ) . We also study the relationship between the quasi-nilpotent part of the adjoint $$T^*$$ T ∗ and the analytic core K(T) in the case of decomposable complex symmetric operators. In the last part we consider Weyl type theorems for triangular operator matrices for which one of the entries has form JTJ, or has form $$JT^*J$$ J T ∗ J . The theory is exemplified in some concrete cases.


2021 ◽  
Vol 7 (3) ◽  
Author(s):  
Steven G. Krantz ◽  
Paweł M. Wójcicki

AbstractIn this paper we introduce a new distance by means of the so-called Szegő kernel and examine some basic properties and its relationship with the so-called Skwarczyński distance. We also examine the relationship between this distance, and the so-called Bergman distance and Szegő distance.


1965 ◽  
Vol 17 ◽  
pp. 1030-1040 ◽  
Author(s):  
Earl A. Coddington

The domain and null space of an operator A in a Hilbert space will be denoted by and , respectively. A formally normal operatorN in is a densely defined closed (linear) operator such that , and for all A normal operator in is a formally normal operator N satisfying 35 . A study of the possibility of extending a formally normal operator N to a normal operator in the given , or in a larger Hilbert space, was made in (1).


1981 ◽  
Vol 22 (1) ◽  
pp. 69-72 ◽  
Author(s):  
G. de Barra

In [1] it was shown that for a compact normal operator on a Hilbert space the numerical range was the convex hull of the point spectrum. Here it is shown that the same holds for a semi-normal operator whose point spectrum satisfies a density condition (Theorem 1). In Theorem 2 a similar condition is shown to imply that the numerical range of a semi-normal operator is closed. Some examples are given to indicate that the condition in Theorem 1 cannot be relaxed too much.


Author(s):  
S. Malathi, Et. al.

In this paper we introduce a new type of neighbourhoods, namely, t-neighbourhoods in trigonometric topological spaces and study their basic properties. Also, we discuss the relationship between neighbourhoods and t-neighbourhoods. Further, we give the necessary condition for t-neighbourhoods in trigonometric topological spaces.  .


1999 ◽  
Vol 22 (1) ◽  
pp. 97-108 ◽  
Author(s):  
A. Parsian ◽  
A. Shafei Deh Abad

For a real Hilbert space(H,〈,〉), a subspaceL⊂H⊕His said to be a Dirac structure onHif it is maximally isotropic with respect to the pairing〈(x,y),(x′,y′)〉+=(1/2)(〈x,y′〉+〈x′,y〉). By investigating some basic properties of these structures, it is shown that Dirac structures onHare in one-to-one correspondence with isometries onH, and, any two Dirac structures are isometric. It is, also, proved that any Dirac structure on a smooth manifold in the sense of [1] yields a Dirac structure on some Hilbert space. The graph of any densely defined skew symmetric linear operator on a Hilbert space is, also, shown to be a Dirac structure. For a Dirac structureLonH, everyz∈His uniquely decomposed asz=p1(l)+p2(l)for somel∈L, wherep1andp2are projections. Whenp1(L)is closed, for any Hilbert subspaceW⊂H, an induced Dirac structure onWis introduced. The latter concept has also been generalized.


1969 ◽  
Vol 21 ◽  
pp. 1421-1426 ◽  
Author(s):  
Heydar Radjavi

The main result of this paper is that every normal operator on an infinitedimensional (complex) Hilbert space ℋ is the product of four self-adjoint operators; our Theorem 4 is an actually stronger result. A large class of normal operators will be given which cannot be expressed as the product of three self-adjoint operators.This work was motivated by a well-known resul t of Halmos and Kakutani (3) that every unitary operator on ℋ is the product of four symmetries, i.e., operators that are self-adjoint and unitary.1. By “operator” we shall mean bounded linear operator. The space ℋ will be infinite-dimensional (separable or non-separable) unless otherwise specified. We shall denote the class of self-adjoint operators on ℋ by and that of symmetries by .


1972 ◽  
Vol 13 (3) ◽  
pp. 323-326
Author(s):  
Mary R. Embry

In [1]R. G. Douglas proved that if A and B are continuous linear operators on a Hilbert space X, the following three conditions are equivalent:


Sign in / Sign up

Export Citation Format

Share Document