scholarly journals Slab melting and slab melt metasomatism in the Northern Andean Volcanic Zone : adakites and high-Mg andesites from Pichincha volcano (Ecuador)

2002 ◽  
Vol 173 (3) ◽  
pp. 195-206 ◽  
Author(s):  
Erwan Bourdon ◽  
Jean-Philippe Eissen ◽  
Marc-André Gutscher ◽  
Michel Monzier ◽  
Pablo Samaniego ◽  
...  

Abstract Situated in the fore-arc of the Northern Volcanic Zone (NVZ) of the Andes in Ecuador, Pichincha volcano is an active edifice where have been erupted unusual magmas as adakites and high-Mg andesites. The particular geodynamic setting of the ecuadorian margin (i.e. the flat subduction of the Carnegie Ridge) suggests that thermo-barometric conditions for the partial melting of the oceanic crust are accomplished beneath this volcano. Pichincha adakites possess all the geochemical and isotopic characteristics of slab melts described in various other arc settings. High-Mg andesites with geochemical characteristics close to those of adakites present strong enrichments in MgO that suggest that, once they were produced by ca. 10 % partial melting of the downgoing subducted slab, some adakites en route to the surface strongly interacted with the peridotitic mantle wedge. Adakitic magmas could then represent, as in many other arcs where slab melting occurs, the principal metasomatic agent of the mantle in the NVZ in Ecuador.

Author(s):  
M. S. Drummond ◽  
M. J. Defant ◽  
P. K. Kepezhinskas

ABSTRACT:The prospect of partial melting of the subducted oceanic crust to produce arc magmatism has been debated for over 30 years. Debate has centred on the physical conditions of slab melting and the lack of a definitive, unambiguous geochemical signature and petrogenetic process. Experimental partial melting data for basalt over a wide range of pressures (1–32 kbar) and temperatures (700–1150°C) have shown that melt compositions are primarily trondhjemite–tonalite–dacite (TTD). High-Al (> 15% Al2O3 at the 70% SiO2 level) TTD melts are produced by high-pressure (≥ 5 kbar) partial melting of basalt, leaving a restite assemblage of garnet + clinopyroxene ± hornblende. A specific Cenozoic high-Al TTD (adakite) contains lower Y, Yb and Sc and higher Sr, Sr/Y, La/Yb and.Zr/Sm relative to other TTD types and is interpreted to represent a slab melt under garnet amphibolite to eclogite conditions. High-Al TTD with an adakite-like geochemical character is prevalent in the Archean as the result of a higher geotherm that facilitated slab melting. Cenozoic adakite localities are commonly associated with the subduction of young (<25 Ma), hot oceanic crust, which may provide a slab geotherm (≍9–10°C km−1) conducive for slab dehydration melting. Viable alternative or supporting tectonic effects that may enhance slab melting include highly oblique convergence and resultant high shear stresses and incipient subduction into a pristine hot mantle wedge. The minimum P–T conditions for slab melting are interpreted to be 22–26 kbar (75–85 km depth) and 750–800°C. This P–T regime is framed by the hornblende dehydration, 10°C/km, and wet basalt melting curves and coincides with numerous potential slab dehydration reactions, such as tremolite, biotite + quartz, serpentine, talc, Mg-chloritoid, paragonite, clinohumite and talc + phengite. Involvement of overthickened (>50 km) lower continental crust either via direct partial melting or as a contaminant in typical mantle wedge-derived arc magmas has been presented as an alternative to slab melting. However, the intermediate to felsic volcanic and plutonic rocks that involve the lower crust are more highly potassic, enriched in large ion lithophile elements and elevated in Sr isotopic values relative to Cenozoic adakites. Slab-derived adakites, on the other hand, ascend into and react with the mantle wedge and become progressively enriched in MgO, Cr and Ni while retaining their slab melt geochemical signature. Our studies in northern Kamchatka, Russia provide an excellent case example for adakite-mantle interaction and a rare glimpse of trapped slab melt veinlets in Na-metasomatised mantle xenoliths.


2020 ◽  
Author(s):  
Zhi Wang ◽  
Jian Wang

&lt;p&gt;Arc magmatism and megathrust earthquake occurrence in a subduction zone are deemed to attribute to many factors, including structural heterogeneities, fluid contents, temperature, depth of subducting oceanic crust, and etc. However, how these factors affect them is unclear. The extensive arc magmatism observed on the island arcs is considered to be an indicator on chemical exchange between the wedge mantle and the surface in a subduction zone. Megathrust earthquake frequently occurrence is also considered to be attributed to the slab melting and associated interplate coupling of the subducting plate. The Western Pacific subduction zone is regarded as one of the best Laboratory for seismologists to examine these processes due to the densest seismic networks recording numerous earthquakes. Some of the previous studies suggest that the island-arc magmatism is mainly contributed to the melting of peridotite in the mantle wedge due to fluids intrusion from the dehydration process associated with the subducting oceanic crust. They further argued that the oceanic plate could only provide water to the overlying mantle wedge for arc magmatism, but not melt itself due to that it is too cold to melt at a depth between 100 and 200km. However, some of other studies revealed that the hydrated basalt derived from the mid-ocean ridge will be melted with high T and water saturated on the upper interface of the sbuducting plate in the mantle wedge. We consider that the three-dimensional (3-D) P- and S- wave velocity (Vp, Vs) and Poisson&amp;#8217;s ratio (&amp;#963;) structures of the subduction zone, synthesized from a large-quantity of high-quality direct P-, and S-wave arrival times of source-recive pairs from the well located suboceanic events with sP depth phase data could provide a compelling evidence for structural heterogeneity, highly hydrated and serpentinized forearc mantle and dehydrated fluids in the subduction zones. In this study, we combined seismic velocities and Poisson&amp;#8217;s ratio images under the entire-arc region of the Western Pacific subduction zone to reveal their effects on megathrust earthquake generation and arc magmatism. We find that a ~10 km-thick low-velocity layer with high-V and high-Poisson&amp;#8217;s ratio anomalies is clearly imaged along the upper interface of the subducting Pacific slab. This distinct layer implies partial melting of the oceanic crust due to the deep-seated metamorophic reactions depending on the source of fluids and temperature regime. Such a process could refertilize the overlying mantle wedge and enrich the peridotite sources of basalts under the island arc. Significant low-V and high-Poisson&amp;#8217;s ratio anomalies were observed in the mantle wedge along the volcanic front, indicating melting or partial melting of peridotite-rich mantle and then yield tholeiitic magma there. The present study demonstrates that the combined factors of fluid content, mineral composition and thermal regime play a crucial role in both slab melting and arc-magmatism under the Western Pacific subduction zone.&lt;/p&gt;


Geology ◽  
2004 ◽  
Vol 32 (1) ◽  
pp. e46-e47 ◽  
Author(s):  
E. Bourdon ◽  
P. Samaniego ◽  
M. Monzier ◽  
C. Robin ◽  
J.-P. Eissen ◽  
...  

Geology ◽  
2004 ◽  
Vol 32 (1) ◽  
pp. e47-e47
Author(s):  
Jennifer M. Garrison ◽  
Jon P. Davidson

Author(s):  
Hans Konrad Johnsen ◽  
Hakon G Rueslatten ◽  
Martin Torvald Hovland

The main objective of this communication is to describe the &lsquo;Global Salt Cycle&rsquo;. Giant salt accumulations are commonly found along continental margins of former rifts. The first stage in the accumulation process is saturation of newly formed oceanic crust with seawater. Final mobilisation and accumulation of the salts occurs during rifting, localised in the vicinity of relict subduction zones. Oceanic crust is created along the spreading ridges in the deep oceans of the Earth. It exchanges mass and energy with seawater in hydrothermal circulation cells that penetrate deep into the new and fractured crust. Water-rock interactions include the formation of hydrated and hydroxylated minerals, e.g., serpentinites and clay minerals. By incorporating hydroxyl groups and water in their crystal lattices, the salinity of remaining brines increases. Subduction of oceanic crust and serpentinised lithosphere transports water, hydrated minerals, and marine salts deep into the crust and mantle. Upon pressurisation and heating of the subducting slab, different parts of this water are expelled at different depths/temperatures. The resulting fluids will contain salts brought in with the slab, as well as new salts formed by water-rock interaction. The combination of elevated pressures and temperatures, water, salinity, and CO2, create permeability in the normally impermeable, peridotitic mantle, by altering the fluid-rock dihedral angles of mineral grains. This P/T-determined intergranular permeability allows ascent of saline fluids, under lithostatic pressure, within the mantle wedge, or the slab itself. The fluids produce a mechanically weakened and buoyant zone within the mantle wedge due to high pore pressure between mineral grains and reduced mantle density. During the lifetime of a subduction zone, a substantial accumulation of saline fluids within the mantle wedge and crust, is evident. Deep, fluid reservoirs accumulate between the subduction trench and the volcanic front. They may exist for hundreds of millions of years, even after the extinction of the subduction zone. Saline fluids may escape to the surface along deep faults, due to overfilling of available pores/fractures. Fluids within the mantle wedge may form rock melts or exist as supercritical, mineral rich fluids. The combination of reduced pressure due to rifting, and a saline and buoyant mantle, creates a mantle circulation that brings the accumulated, saline fluids, to crustal levels. Salts will therefore accumulate during initial stages of rifting as a result of massive fluid expulsion, phase change and boiling of mantle fluids. No extra energy is required to produce phase change and boiling. The result is formation of solid salts or dense brines/slurries invading fractured crustal rocks, or escaping to the surface/seabed. This process may take place both before and after the sea has invaded a continental rift.


2018 ◽  
Vol 6 ◽  
Author(s):  
Julien Leuthold ◽  
C. Johan Lissenberg ◽  
Brian O'Driscoll ◽  
Ozge Karakas ◽  
Trevor Falloon ◽  
...  

2021 ◽  
Author(s):  
◽  
Matthew Thomas Stevens

<p>The Coromandel Volcanic Zone (CVZ) was the longest-lived area of volcanism in New Zealand hosting the commencement of large explosive rhyolitic and ignimbrite forming eruptions. The NW trending Coromandel Peninsula is the subaerial remnant of the Miocene-Pliocene CVZ, which is regarded as a tectonic precursor to the Taupo Volcanic Zone (TVZ), currently the most dynamic and voluminous rhyolitic volcanic centre on Earth. This study presents new single glass shard major and trace element geochemical analyses for 72 high-silica volcanic tephra layers recovered from well-dated deep-sea sediments of the SW Pacific Ocean by the Ocean Drilling Program (ODP) Leg 181. ODP Site 1124, ~720 km south and east from the CVZ, penetrated sediments of the Rekohu Drift yielding an unprecedented record of major explosive volcanic eruptions owing to the favourable location and preservation characteristics at this site. This record extends onshore eruptive sequences of CVZ explosive volcanism that are obscured by poor exposure, alteration, and erosion and burial by younger volcanic deposits. Tephra layers recovered from Site 1124 are well-dated through a combination of biostratigraphic and palaeomagnetic methods allowing the temporal geochemical evolution of the CVZ to be reconstructed in relation to changes in the petrogenesis of CVZ arc magmas from ~ 10 to 2 Ma. This thesis establishes major and trace element geochemical "fingerprints" for all Site 1124-C tephras using well-established (wavelength dispersive electron probe microanalysis) and new (laser ablation inductively coupled plasma mass spectrometry) in situ single glass shard microanalytical techniques. Trace element analysis of Site 1124-C glass shards (as small as 20 um) demonstrate that trace element signatures offer a more specific, unequivocal characterisation for distinguishing (and potentially correlating) between tephras with nearly identical major element compositions. The Site 1124-C core contains 72 unaltered Miocene-Pliocene volcanic glass-shard-bearing laminae > 1 cm thick that correspond to 83 or 84 geochemical eruptive units. Revised eruptive frequencies based on the number of geochemical eruptive units identified represent at least one eruption every 99 kyr for the late Miocene and one per 74 kyr for the Pliocene. The frequency of tephra deposition throughout the history of the CVZ has not been constant, rather reflecting pulses of major explosive eruptions resulting in closely clustered groups of tephra separated by periods of reduced activity, relative volcanic quiescence or non-tephra deposition. As more regular activity became prevalent in the Pliocene, it was accompanied by more silicic magma compositions. Rhyolitic volcanic glass shards are characterised by predominantly calc-alkaline and minor high-K enriched major element compositions. Major element compositional variability of the tephras deposited between 10 Ma and 2 Ma reveals magma batches with pre-eruptive compositional gradients implying a broad control by fractional crystallisation. Trace element characterisation of glass shards reveals the role of magmatic processes that are not readily apparent in the relatively homogeneous major element compositions. Multi-element diagrams show prominent negative Sr and Ti anomalies against primitive mantle likely caused by various degrees of plagioclase and titanomagnetite fractional crystallisation in shallow magma chambers. Relative Nb depletion, characteristic of arc volcanism, is moderate in CVZ tephras. HFSEs (e.g. Nb, Zr, Ti) and HREEs (e.g. Yb, Lu) remain immobile during slab fluid flux suggesting they are derived from the mantle wedge. LILE (e.g. Rb, Cs, Ba, Sr) and LREE (e.g. La, Ce) enrichments are consistent with slab fluid contribution. B/La and Li/Y ratios can be used as a proxy for the flux of subducting material to the mantle wedge, they suggest there is a strong influence from this component in the generation of CVZ arc magmas, potentially inducing melting. CVZ tephra show long-term coherent variability in trace element geochemistry. Post ~ 4 Ma tephras display a more consistent, less variable, chemical fingerprint that persists up to and across the CVZ/TVZ transition at ~ 2 Ma. Initiation of TVZ volcanism may have occurred earlier than is presently considered, or CVZ to TVZ volcanism may have occurred without significant changes in magma generation processes.</p>


Sign in / Sign up

Export Citation Format

Share Document