scholarly journals Numerical Simulation of Gas-Water Two-Phase Flow in Deep Shale Gas Reservoir Development Based on Mixed Fracture Modeling

Lithosphere ◽  
2021 ◽  
Vol 2021 (Special 4) ◽  
Author(s):  
Sidong Fang ◽  
Cheng Dai ◽  
Junsheng Zeng ◽  
Heng Li

Abstract In this paper, the development of a three-dimensional, two-phase fluid flow model (Modified Embedded Discrete Fracture Model) to study flow performances of a fractured horizontal well in deep-marine shale gas is presented. Deep-marine shale gas resources account for nearly 80% in China, which is the decisive resource basis for large-scale shale gas production. The dynamic characteristics of deep shale gas reservoirs are quite different and more complex. This paper uses the embedded discrete fracture model to simulate artificial fractures (main fractures and secondary fractures) and the dual-media model to simulate the mixed fractured media of natural fractures and considers the flow characteristics of partitions (artificial fractures, natural fractures, and matrix). Gas desorption is considered in the matrix. Different degrees of stress sensitivity are considered for natural and artificial fractures. Aiming at accurately simulating the whole production history of horizontal well fracturing, especially the dynamic changes of postfracturing flowback, a postfracturing fluid initialization method based on fracturing construction parameters (fracturing fluid volume and pump stop pressure) is established. The flow of gas and water in the early stage after fracturing is simulated, and the regional phase permeability and capillary force curves are introduced to simulate the process of flowback and production of horizontal wells after fracturing. The influence of early fracture closure on the gas-water flow is characterized by stress sensitivity. A deep shale gas reservoir of Sinopec was selected for the case study. The simulation results show it necessary to consider the effects of fractures and stress sensitivity in the matrix when considering the dynamic change of production during the flowback and production stages. The findings of this study can help for better understanding of the fracture distribution characteristics of shale gas, shale gas production principle, and well EUR prediction, which provide a theoretical basis for the effective development of shale gas horizontal well groups.

2021 ◽  
Author(s):  
Liang Xue ◽  
Shao-Hua Gu ◽  
Xie-Er Jiang ◽  
Yue-Tian Liu ◽  
Chen Yang

AbstractShale gas reservoirs have been successfully developed due to the advancement of the horizontal well drilling and multistage hydraulic fracturing techniques. However, the optimization design of the horizontal well drilling, hydraulic fracturing, and operational schedule is a challenging problem. An ensemble-based optimization method (EnOpt) is proposed here to optimize the design of the hydraulically fractured horizontal well in the shale gas reservoir. The objective is to maximize the net present value (NPV) which requires a simulation model to predict the cumulative shale gas production. To accurately describe the geometry of the hydraulic fractures, the embedded discrete fracture modeling method (EDFM) is used to construct the shale gas simulation model. The effects of gas absorption, Knudsen diffusion, natural and hydraulic fractures, and gas–water two phase flow are considered in the shale gas production system. To improve the parameter continuity and Gaussianity required by the EnOpt method, the Hough transformation parameterization is used to characterize the horizontal well. The results show that the proposed method can effectively optimize the design parameters of the hydraulically fractured horizontal well, and the NPV can be improved greatly after optimization so that the design parameters can approach to their optimal values.


Geofluids ◽  
2018 ◽  
Vol 2018 ◽  
pp. 1-15 ◽  
Author(s):  
Huimin Wang ◽  
J. G. Wang ◽  
Feng Gao ◽  
Xiaolin Wang

A shale gas reservoir is usually hydraulically fractured to enhance its gas production. When the injection of water-based fracturing fluid is stopped, a two-phase flowback is observed at the wellbore of the shale gas reservoir. So far, how this water production affects the long-term gas recovery of this fractured shale gas reservoir has not been clear. In this paper, a two-phase flowback model is developed with multiscale diffusion mechanisms. First, a fractured gas reservoir is divided into three zones: naturally fractured zone or matrix (zone 1), stimulated reservoir volume (SRV) or fractured zone (zone 2), and hydraulic fractures (zone 3). Second, a dual-porosity model is applied to zones 1 and 2, and the macroscale two-phase flow flowback is formulated in the fracture network in zones 2 and 3. Third, the gas exchange between fractures (fracture network) and matrix in zones 1 and 2 is described by a diffusion process. The interactions between microscale gas diffusion in matrix and macroscale flow in fracture network are incorporated in zones 1 and 2. This model is validated by two sets of field data. Finally, parametric study is conducted to explore key parameters which affect the short-term and long-term gas productions. It is found that the two-phase flowback and the flow consistency between matrix and fracture network have significant influences on cumulative gas production. The multiscale diffusion mechanisms in different zones should be carefully considered in the flowback model.


Geofluids ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-15
Author(s):  
Hao Dong ◽  
Yi Zhang ◽  
Zongwu Li ◽  
Chao Jiang ◽  
Jiaze Li ◽  
...  

Shale reservoirs have some natural fractures with a certain density and connectivity. The basic percolation model of shale gas reservoir: the black oil model of gas-water phase is used as the basic model, and the dissolved gas is used to simulate adsorbed gas. Accurate description of natural fractures: random distributed discrete fracture model is used as the basic model to describe natural fractures. By comparing the calculation results of single medium (including random distributed discrete fracture model) and double medium model, the model for predicting shale gas productivity is optimized.


2021 ◽  
Author(s):  
Mingjun Chen ◽  
Peisong Li ◽  
Yili Kang ◽  
Xinping Gao ◽  
Dongsheng Yang ◽  
...  

Abstract The low flowback efficiency of fracturing fluid would severely increase water saturation in a near-fracture formation and limit gas transport capacity in the matrix of a shale gas reservoir. Formation heat treatment (FHT) is a state-of-the-art technology to prevent water blocking induced by fracturing fluid retention and accelerate gas desorption and diffusion in the matrix. A comprehensive understanding of its formation damage removal mechanisms and determination of production improvement is conducive to enhancing shale gas recovery. In this research, the FHT simulation experiment was launched to investigate the effect of FHT on gas transport capacity, the multi-field coupling model was established to determine the effective depth of FHT, and the numerical simulation model of the shale reservoir was established to analyze the feasibility of FHT. Experimental results show that the shale permeability and porosity were rising overall during the FHT, the L-1 permeability increased by 30- 40 times, the L-2 permeability increased by more than 100 times. The Langmuir pressure increased by 1.68 times and the Langmuir volume decreased by 26%, which means the methane desorption efficiency increased. Results of the simulation demonstrate that the FHT process can practically improve the effect of hydraulic fracturing and significantly increase the well production capacity. The stimulation mechanisms of the FHT include thermal stress cracking, organic matter structure changing, and aqueous phase removal. Furthermore, the special characteristics of the supercritical water such as the strong oxidation, can not be ignored, due to the FHT can assist the retained hydraulic fracturing fluid to reach the critical temperature and pressure of water and transform to the supercritical state. The FHT can not only alleviate the formation damage induced by the fracturing fluid, but also make good use of the retained fracturing fluid to enhance the permeability of a shale gas reservoir, which is an innovative method to dramatically enhance gas transport capacity in shale matrix.


Energies ◽  
2020 ◽  
Vol 13 (12) ◽  
pp. 3070
Author(s):  
Renjie Shao ◽  
Yuan Di ◽  
Dawei Wu ◽  
Yu-Shu Wu

The embedded discrete fracture model (EDFM), among different flow simulation models, achieves a good balance between efficiency and accuracy. In the EDFM, micro-scale fractures that cannot be characterized individually need to be homogenized into the matrix, which may bring anisotropy into the matrix. However, the simplified matrix–fracture fluid exchange assumption makes it difficult for EDFM to address the anisotropic flow. In this paper, an integrally embedded discrete fracture model (iEDFM) suitable for anisotropic formations is proposed. Structured mesh is employed for the anisotropic matrix, and the fracture element, which consists of a group of connected fractures, is integrally embedded in the matrix grid. An analytic pressure distribution is derived for the point source in anisotropic formation expressed by permeability tensor, and applied to the matrix–fracture transmissibility calculation. Two case studies were conducted and compared with the analytic solution or fine grid result to demonstrate the advantage and applicability of iEDFM to address anisotropic formation. In addition, a two-phase flow example with a reported dataset was studied to analyze the effect of the matrix anisotropy on the simulation result, which also showed the feasibility of iEDFM to address anisotropic formation with complex fracture networks.


Geofluids ◽  
2018 ◽  
Vol 2018 ◽  
pp. 1-17 ◽  
Author(s):  
Qi-guo Liu ◽  
Wei-hong Wang ◽  
Hua Liu ◽  
Guangdong Zhang ◽  
Long-xin Li ◽  
...  

Shale gas reservoir has been aggressively exploited around the world, which has complex pore structure with multiple transport mechanisms according to the reservoir characteristics. In this paper, a new comprehensive mathematical model is established to analyze the production performance of multiple fractured horizontal well (MFHW) in box-shaped shale gas reservoir considering multiscaled flow mechanisms (ad/desorption and Fick diffusion). In the model, the adsorbed gas is assumed not directly diffused into the natural macrofractures but into the macropores of matrix first and then flows into the natural fractures. The ad/desorption phenomenon of shale gas on the matrix particles is described by a combination of the Langmuir’s isothermal adsorption equation, continuity equation, gas state equation, and the motion equation in matrix system. On the basis of the Green’s function theory, the point source solution is derived under the assumption that gas flow from macropores into natural fractures follows transient interporosity and absorbed gas diffused into macropores from nanopores follows unsteady-state diffusion. The production rate expression of a MFHW producing at constant bottomhole pressure is obtained by using Duhamel’s principle. Moreover, the curves of well production rate and cumulative production vs. time are plotted by Stehfest numerical inversion algorithm and also the effects of influential factors on well production performance are analyzed. The results derived in this paper have significance to the guidance of shale gas reservoir development.


Author(s):  
Yingzhong Yuan ◽  
Wende Yan ◽  
Fengbo Chen ◽  
Jiqiang Li ◽  
Qianhua Xiao ◽  
...  

AbstractComplex fracture systems including natural fractures and hydraulic fractures exist in shale gas reservoir with fractured horizontal well development. The flow of shale gas is a multi-scale flow process from microscopic nanometer pores to macroscopic large fractures. Due to the complexity of seepage mechanism and fracture parameters, it is difficult to realize fine numerical simulation for fractured horizontal wells in shale gas reservoirs. Mechanisms of adsorption–desorption on the surface of shale pores, slippage and Knudsen diffusion in the nanometer pores, Darcy and non-Darcy seepage in the matrix block and fractures are considered comprehensively in this paper. Through fine description of the complex fracture systems after horizontal well fracturing in shale gas reservoir, the problems of conventional corner point grids which are inflexible, directional, difficult to geometrically discretize arbitrarily oriented fractures are overcome. Discrete fracture network model based on unstructured perpendicular bisection grids is built in the numerical simulation. The results indicate that the discrete fracture network model can accurately describe fracture parameters including length, azimuth and density, and that the influences of fracture parameters on development effect of fractured horizontal well can be finely simulated. Cumulative production rate of shale gas is positively related to fracture half-length, fracture segments and fracture conductivity. When total fracture length is constant, fracturing effect is better if single fracture half-length or penetration ratio is relatively large and fracturing segments are moderate. Research results provide theoretical support for optimal design of fractured horizontal well in shale gas reservoir.


Sign in / Sign up

Export Citation Format

Share Document