scholarly journals Predictive Modelling of Naturally Fractured Reservoirs Using Geomechanics and Flow Simulation

GeoArabia ◽  
2001 ◽  
Vol 6 (1) ◽  
pp. 27-42
Author(s):  
Stephen J. Bourne ◽  
Lex Rijkels ◽  
Ben J. Stephenson ◽  
Emanuel J.M. Willemse

ABSTRACT To optimise recovery in naturally fractured reservoirs, the field-scale distribution of fracture properties must be understood and quantified. We present a method to systematically predict the spatial distribution of natural fractures related to faulting and their effect on flow simulations. This approach yields field-scale models for the geometry and permeability of connected fracture networks. These are calibrated by geological, well test and field production data to constrain the distributions of fractures within the inter-well space. First, we calculate the stress distribution at the time of fracturing using the present-day structural reservoir geometry. This calculation is based on a geomechanical model of rock deformation that represents faults as frictionless surfaces within an isotropic homogeneous linear elastic medium. Second, the calculated stress field is used to govern the simulated growth of fracture networks. Finally, the fractures are upscaled dynamically by simulating flow through the discrete fracture network per grid block, enabling field-scale multi-phase reservoir simulation. Uncertainties associated with these predictions are considerably reduced as the model is constrained and validated by seismic, borehole, well test and production data. This approach is able to predict physically and geologically realistic fracture networks. Its successful application to outcrops and reservoirs demonstrates that there is a high degree of predictability in the properties of natural fracture networks. In cases of limited data, field-wide heterogeneity in fracture permeability can be modelled without the need for field-wide well coverage.


2015 ◽  
Vol 18 (04) ◽  
pp. 463-480 ◽  
Author(s):  
Jianlei Sun ◽  
David Schechter

Summary Multistage hydraulically fractured wells are applied widely to produce unconventional resource plays. In naturally fractured reservoirs, hydraulic-fracture treatments may induce complex-fracture geometries that one cannot model accurately and efficiently with Cartesian and corner-point grid systems or standard dual-porosity approaches. The interaction of hydraulic and naturally occurring fractures almost certainly plays a role in ultimate well and reservoir performance. Current simulation models are unable to capture the complexity of this interaction. Generally speaking, our ability to detect and characterize fracture systems is far beyond our capability of modeling complex natural-fracture systems. To evaluate production performance in these complex settings with numerical simulation, fracture networks require advanced meshing and domain-discretization techniques. This paper investigates these issues by developing natural-fracture networks with fractal-based techniques. After a fracture network is developed, we demonstrate the feasibility of gridding complex natural-fracture behavior with optimization-based unstructured meshing algorithms. Then we can demonstrate that one can simulate natural-fracture complexities such as variable aperture, spacing, length, and strike. This new approach is a significant step beyond the current method of dual-porosity simulation that essentially negates the sophisticated level of fracture characterization pursued by many operators. We use currently established code for fractal discrete-fracture-network (FDFN) models to build realizations of naturally fractured reservoirs in terms of stochastic fracture networks. From outcrop, image-log, and core analysis, it is possible to extract fracture fractal parameters pertaining to aperture, spacing, and length distribution, including center distribution as well as a fracture strike. Then these parameters are used as input variables for the FDFN code to generate multiple realizations of fracture networks mimicking fracture clustering and randomly distributed natural fractures. After incorporating hydraulic fractures, complex-fracture networks are obtained for further reservoir-domain discretization. To discretize the complex-fracture networks, a new mesh-generation approach is developed to conform to nonorthogonal and low-angle intersections of extensively clustered discrete-fracture networks with nonuniform aperture distribution. Optimization algorithms are adopted to reduce highly skewed cells, and to ensure good mesh quality around fracture tips, intersections, and regions of extensive fracture clustering. Moreover, local grid refinement is implemented with a predefined distance function to control cell sizes and shapes around and far away from fractures. Natural-fracture spacing, length, strike, and aperture distribution are explicitly gridded, thus introducing a new simulation approach that is far superior to dual-porosity simulation. Finally, initial sensitivity studies are performed to demonstrate both the capability of the optimization-based unstructured meshing algorithms, and the effect of aforementioned natural-fracture parameters on well performance. This study demonstrates how to incorporate a fractal-based characterization approach into the current work flow for simulating unconventional reservoirs, and most importantly solves several issues such as nonorthogonal intersections, extensive clustering, and nonuniform aperture distribution associated with domain discretization with unstructured grids for complex-fracture networks. The proposed meshing techniques for complex fracture networks can be easily implemented in existing preprocessing, unstructured mesh generators. The sensitivity study and the simulation runs demonstrate the importance of fracture characterization as well as uncertainties associated with naturally fractured reservoirs on well-production performance.





2015 ◽  
Vol 18 (04) ◽  
pp. 523-533 ◽  
Author(s):  
Shuhua Wang ◽  
Mingxu Ma ◽  
Wei Ding ◽  
Menglu Lin ◽  
Shengnan Chen

Summary Pressure-transient analysis in dual-porosity media is commonly studied by assuming a constant reservoir permeability. Such an assumption can result in significant errors when estimating pressure behavior and production rate of naturally fractured reservoirs as fracture permeability decreases during the production. At present, there is still a lack of analytical pressure-transient studies in naturally fractured reservoirs while taking stress-sensitive fracture permeability into account. In this study, an approximate analytical model is proposed to investigate the pressure behavior and production rate in the naturally fractured reservoirs. This model assumes that fracture permeability is a function of both permeability modulus and pressure difference. The pressure-dependent fracture system is coupled with matrix system with an unsteady-state exchange flow rate. A nonlinear diffusivity equation in fracture system is developed and solved by Pedrosa's transformation and a perturbation technique with zero-order approximation. A total of six solutions in the Laplace space are presented for two inner-boundary conditions and three outer-boundary conditions. Finally, pressure behavior and production rate are studied for both infinite and finite reservoirs. Pressure behavior and production rate from the models with and without stress-sensitive permeability are compared. It is found that, for an infinite reservoir with a constant-flow-rate boundary condition, if permeability modulus is 0.1, dimensionless pressure difference at the well bottom from the model with fracture-permeability sensitivity is 80% higher than that of the constant fracture-permeability model at a dimensionless time of 106. Such difference can be as high as 216% if permeability modulus increases to 0.15. On the contrary, for the infinite reservoirs with a constant-pressure boundary, the constant fracture-permeability model tends to overestimate the flow rate at wellbore and cumulative production. The proposed model not only provides an analytical and quantitative method to investigate the effects of fracture-permeability sensitivity on reservoir-pressure distribution and production, but it also can be applied to build up analysis of well test data from stress-sensitive formations.





Sign in / Sign up

Export Citation Format

Share Document