scholarly journals Early – Middle Miocene Suez Syn-rift-Basin, Egypt: A sequence stratigraphy framework

GeoArabia ◽  
2011 ◽  
Vol 16 (1) ◽  
pp. 113-134 ◽  
Author(s):  
Abdulkader Youssef

ABSTRACT The analyses of thirteen planktonic and benthonic biozones, paleobathymetry and electric log data were used to interpret the sequence stratigraphy of the Early to early Middle Miocene syn-rift section in the Gulf of Suez. The study area is located in the central province of the Gulf and includes six boreholes located in two half grabens and the October Field. The new framework proposes the Suez Supersequence and Suez Depositional Sequence DS 50 instead of the five paleontological sequences commonly cited in the literature (S10 to S50). The Supersequence starts above the regional unconformity that separates the pre-and syn-rift rocks, commonly referred to as Terrace T00. The shallow-marine deposits of the Aquitanian Nukhul Formation form the lowstand systems tract. The Burdigalian Mheiherrat Formation starts with the Uvigerina costata flooding event and forms the transgressive systems tract deposited in outer-neritic to upper-bathyal settings. The overlying Langhian Hawara Formation was deposited in upper to middle bathyal settings and represents the maximum flooding interval. The Langhian Asl Formation (early falling stage systems tract, upper bathyal to outer neritic) and overlying Langhian Lagia Member of the Ayun Musa Formation (late falling stage systems tract) closed the Supersequence. Suez Depositional Sequence DS 50 lies unconformably on the Supersequence, and represents a major transgression starting with the Praeorbulina glomerosa s.l. flooding event. DS 50 corresponds to the Ras Budran Member of the Ayun Musa Formation (paleontological sequence S50). Its setting is outer neritic and its upper sequence boundary is an unconformable with the Belayim Formation. The Suez Supersequence is interpreted in terms of 35 genetic parasequences and DS 50 by 10 more. The parasequences are interpreted by the coincidence of quantitative paleontological faunal and paleobathymetric breaks with the electric log shifts. The sequences and parasequences are correlated between the six wells to show the evolution of the half-grabens and October Field at different times.

GeoArabia ◽  
2014 ◽  
Vol 19 (4) ◽  
pp. 59-108
Author(s):  
G. Wyn Hughes

ABSTRACT The Saudi Arabian Red Sea stratigraphy consists of a variety of lithologies that range from evaporites, deep- and shallow-marine siliciclastics and carbonates, biostratigraphically constrained to range from the Late Cretaceous, Campanian, to Late Pliocene. The succession consists of pre-rift Mesozoic and Palaeogene sediments, and syn-rift and post-rift late Palaeogene and Neogene sediments. Three main episodes of shallow-marine carbonate deposition can be determined, including those of the earliest Early Miocene Musayr Formation of the Tayran Group later Early Miocene Wadi Waqb Member of the Jabal Kibrit Formation and of the Pliocene Badr Formation of the Lisan Group. The Midyan area of the northern Red Sea offers a unique window into the Cretaceous and Miocene succession that is otherwise only present in the deep subsurface. The sediments are of hydrocarbon interest because of the presence of source rocks, siliciclastic and carbonate reservoirs. The Wadi Waqb reservoir is hosted within the Wadi Waqb Member of the Jabal Kibrit Formation, and is of latest Early Miocene to possibly earliest Middle Miocene age. It is considered to have formed a fringing reef complex that formed a steep, fault-influenced margin to a narrow platform, similar to Recent coralgal reefs of the Red Sea. The Wadi Waqb Member is exposed on the east and west flanks of the Ifal Plain. The bioclasts are considered to have traveled as a submarine carbonate debris flow 25 km from their presumed source to the east and possibly the west, and consist mostly of rhodoliths, echinoid and coral fragments together with the benthonic larger foraminifera Operculinella venosa, Operculina complanata, Heterostegina depressa and Borelis melo. The planktonic foraminifera include species of Globigerina, Globigerinoides and Praeorbulina; no specimens of the Middle Miocene planktonic foraminiferal genus Orbulina have yet been encountered in the thin sections. The presence of Borelis melo melo, and of B. melo curdica within the region, indicates a latest Early Miocene age. No specimens of the age-equivalent larger benthonic foraminiferal genera Miogypsina or Lepidocyclina have been observed, and this is consistent with evidence from the Wadi Waqb equivalent carbonates elsewhere in the Red Sea and Gulf of Suez. In the east, the Wadi Waqb is represented by discontinuous fringing rhodolith and coral reefs that are welded to steep cliffs of granitic basement. In Wadi Waqb, located in hills that form the western margin to the Ifal Plain, the Wadi Waqb carbonates consist of packstones containing autochthonous planktonic foraminifera and abundant shallow-marine microfossils that are considered to have been derived from the basement-founded rhodolith and coral reefs in the east. The Wadi Waqb reservoir is located beneath the central part of the Ifal Plain, approximately midway down a ramp between the in situ rhodolith-coral reefs and the mixed allochthonous and autochthonous facies at Wadi Waqb. The reservoir contains biofacies similar to those exposed in Wadi Waqb, and indicative of a deep-marine environment, in excess of 50 m water depth. The Wadi Waqb carbonates display sedimentological and petrographic features that closely resemble those described from stratigraphically equivalent carbonates from the localities along the west coast of the Gulf of Suez, including Abu Shaar, where three depositional facies have been defined. It is apparent that these shallow-marine carbonates were established along the west and east rift margins of the Red Sea-Gulf of Suez rift complex prior to their dislocation during the Late Miocene and Pliocene by the left-lateral Aqaba faulting.


GeoArabia ◽  
2010 ◽  
Vol 15 (2) ◽  
pp. 175-204 ◽  
Author(s):  
Moujahed I. Al-Husseini ◽  
M. Dia Mahmoud ◽  
Robley K. Matthews

ABSTRACT The Miocene Kareem Formation in the Egyptian Gulf of Suez, and its equivalent formations throughout the Red Sea (250–550 m thick), contain one of the most important petroleum reservoirs in these highly faulted rift basins. They present a difficult exploration target, particularly over the shelves of the sparsely explored Red Sea for several reasons: (1) water depth exceeds one kilometer, (2) they underlie thick evaporites (including salt exceeding one kilometer in thickness), (3) they are difficult to image by conventional seismic techniques, and (4) their lithology is laterally variable and difficult to predict (anhydrite, carbonate, sandstone, shale and marl). The target Red Sea formations are best controlled by boreholes in the Gulf of Suez, where the Kareem Formation and its members are characterized by various synonymous units. A review of representative data and interpretations shows that the formation and its members are better understood when considered as a third-order, transgressive-regressive (T-R) depositional sequence, named the Kareem Sequence in the Middle East Geologic Time Scale (ME GTS). The Sequence is bounded above by the Belayim Sequence Boundary (Sub-Belayim Unconformity) and below by the Kareem Sequence Boundary (Sub-Kareem Unconformity), both corresponding to major sea-level lowstands. It contains the Arabian Plate Langhian Maximum Flooding Surface Neogene 30 (MFS Ng30) at the top of the Kareem Maximum Flooding Interval (MFI). Its lower Rahmi Member forms the majority of the transgressive systems tract (TST). The Kareem MFI and regressive systems tract (RST or HST) occur within the upper Shagar Member. The paleontology of the Formation is characterized by Planktonic Foraminiferal Zone N9 and in recent papers also N8, and Calcareous Nannofossil Biozone NN5, but the Formation’s assignment to Miocene stages (Burdigalian, Langhian and Serravallian) is unresolved in the literature. In this paper, the Kareem Sequence is interpreted in terms of Kareem subsequences 1 to 6. At semi-regional scales (10s of km), the older three are each represented by an anhydrite bed (Rahmi Anhydrite 1 to 3, each c. 10 m thick) overlain by deep-marine deposits (shale, marl and carbonate, 10s of meters thick). Subsequences 4 to 6 are represented in El Morgan field (Kareem A to C units), and in representative boreholes, by three deep-marine shale/marl units, each of which is overlain by a regressive shallow-marine sandstone unit. The Kareem Sequence is correlated to third-order orbital sequence DS3 1.1 with a depositional period of ca. 2.43 million years between ca. 16.1 and 13.7 million years before present (Ma), or numerically the latest Burdigalian, Langhian and earliest Serravallian (Langhian: 15.97–13.65 Ma in GTS 2004; 15.97–13.82 Ma in GTS 2009). The six subsequences are correlated to the orbital 405,000 year eccentricity cycle (referred to as Stratons 40–35 or DS4 1.1.1 to 1.1.6). The older three subsequences form the transgressive systems tract; the fourth contains the maximum flooding interval MFI (ca. 14.9–14.7 Ma) in its lower part. The regressive systems tract starts in the upper part of the fourth subsequence and encompasses subsequences 5 and 6. The orbital architecture of the Sequence provides a simplified framework for predicting lithology and reservoir development. The six Kareem subsequences carry the orbital-forcing glacio-eustatic signal. During low eccentricity, Antarctic ice-making and global sea-level drops, the northernmost Gulf of Suez and Bab Al Mandeb Strait restricted marine circulation in the Gulf and Red Sea rift basins. The resulting evaporitic setting was associated with the deposition of the Rahmi Anhydrite 1 to 3 beds and exposure over paleohighs. The deeper-marine deposits above the three Rahmi Anhydrite beds, and those of subsequences 4 to 6 reflect high eccentricity, Antarctic ice-melting, global sea-level rises, pluvial conditions at low latitudes (10–30oN), and open-marine circulation in the Red Sea. During pluvial periods, fluvio-deltaic systems prevailed over the mountainous rift shoulders and coastal plains and carried massive clastics into the Gulf and Red Sea Basins.


GeoArabia ◽  
1996 ◽  
Vol 1 (2) ◽  
pp. 343-358
Author(s):  
William A. Wescott ◽  
William N. Krebs ◽  
John C. Dolson ◽  
Salah A. Karamat ◽  
Dag Nummedal

ABSTRACT Unconformity-bounded sequences within the Miocene strata of the Suez Rift reflect a complex interplay between tectonism and sea level fluctuations. Analyses of Miocene outcrops along the Sinai margin of the Gulf of Suez provide new insights into the sequence stratigraphy of this basin. The Miocene strata can be subdivided into seven major sequences separated by biostratigraphically defined time breaks. These lacunae represent depositional sequence boundaries, transgressive surfaces and condensed sections. These basinwide time breaks were related to major tectonic events from rift initiation through rift climax, and post-rift stages. These events include regional sag and fault initiation, fault linkage, footwall uplift, shallowing of detachment depths and increased fault block rotations, regional isostatic uplift, and thermal subsidence. Superimposed on this complex structural evolution were Miocene sea level fluctuations of a magnitude of several tens of meters to a hundred meters. The Sinai outcrops expose the four oldest Miocene biostratigraphic sequences which correspond to two depositional sequences. The lower sequence consists of the Nukhul Formation which was deposited during a transgression (with the higher frequency events recorded as local erosional surfaces, flooding surfaces, and ravinements) and the Mheiherrat Formation which was deposited during a relative high stand. The upper sequence includes the Asl Formation which was deposited during a low stand and the Ras Budran Member of the Ayun Musa Formation which was deposited during the ensuing high stand.


Author(s):  
Lars Stemmerik ◽  
Gregers Dam ◽  
Nanna Noe-Nygaard ◽  
Stefan Piasecki ◽  
Finn Surlyk

NOTE: This article was published in a former series of GEUS Bulletin. Please use the original series name when citing this article, for example: Stemmerik, L., Dam, G., Noe-Nygaard, N., Piasecki, S., & Surlyk, F. (1998). Sequence stratigraphy of source and reservoir rocks in the Upper Permian and Jurassic of Jameson Land, East Greenland. Geology of Greenland Survey Bulletin, 180, 43-54. https://doi.org/10.34194/ggub.v180.5085 _______________ Approximately half of the hydrocarbons discovered in the North Atlantic petroleum provinces are found in sandstones of latest Triassic – Jurassic age with the Middle Jurassic Brent Group, and its correlatives, being the economically most important reservoir unit accounting for approximately 25% of the reserves. Hydrocarbons in these reservoirs are generated mainly from the Upper Jurassic Kimmeridge Clay and its correlatives with additional contributions from Middle Jurassic coal, Lower Jurassic marine shales and Devonian lacustrine shales. Equivalents to these deeply buried rocks crop out in the well-exposed sedimentary basins of East Greenland where more detailed studies are possible and these basins are frequently used for analogue studies (Fig. 1). Investigations in East Greenland have documented four major organic-rich shale units which are potential source rocks for hydrocarbons. They include marine shales of the Upper Permian Ravnefjeld Formation (Fig. 2), the Middle Jurassic Sortehat Formation and the Upper Jurassic Hareelv Formation (Fig. 4) and lacustrine shales of the uppermost Triassic – lowermost Jurassic Kap Stewart Group (Fig. 3; Surlyk et al. 1986b; Dam & Christiansen 1990; Christiansen et al. 1992, 1993; Dam et al. 1995; Krabbe 1996). Potential reservoir units include Upper Permian shallow marine platform and build-up carbonates of the Wegener Halvø Formation, lacustrine sandstones of the Rhaetian–Sinemurian Kap Stewart Group and marine sandstones of the Pliensbachian–Aalenian Neill Klinter Group, the Upper Bajocian – Callovian Pelion Formation and Upper Oxfordian – Kimmeridgian Hareelv Formation (Figs 2–4; Christiansen et al. 1992). The Jurassic sandstones of Jameson Land are well known as excellent analogues for hydrocarbon reservoirs in the northern North Sea and offshore mid-Norway. The best documented examples are the turbidite sands of the Hareelv Formation as an analogue for the Magnus oil field and the many Paleogene oil and gas fields, the shallow marine Pelion Formation as an analogue for the Brent Group in the Viking Graben and correlative Garn Group of the Norwegian Shelf, the Neill Klinter Group as an analogue for the Tilje, Ror, Ile and Not Formations and the Kap Stewart Group for the Åre Formation (Surlyk 1987, 1991; Dam & Surlyk 1995; Dam et al. 1995; Surlyk & Noe-Nygaard 1995; Engkilde & Surlyk in press). The presence of pre-Late Jurassic source rocks in Jameson Land suggests the presence of correlative source rocks offshore mid-Norway where the Upper Jurassic source rocks are not sufficiently deeply buried to generate hydrocarbons. The Upper Permian Ravnefjeld Formation in particular provides a useful source rock analogue both there and in more distant areas such as the Barents Sea. The present paper is a summary of a research project supported by the Danish Ministry of Environment and Energy (Piasecki et al. 1994). The aim of the project is to improve our understanding of the distribution of source and reservoir rocks by the application of sequence stratigraphy to the basin analysis. We have focused on the Upper Permian and uppermost Triassic– Jurassic successions where the presence of source and reservoir rocks are well documented from previous studies. Field work during the summer of 1993 included biostratigraphic, sedimentological and sequence stratigraphic studies of selected time slices and was supplemented by drilling of 11 shallow cores (Piasecki et al. 1994). The results so far arising from this work are collected in Piasecki et al. (1997), and the present summary highlights the petroleum-related implications.


Sign in / Sign up

Export Citation Format

Share Document