scholarly journals High-resolution anatomy of a grainstone package in Khuff Sequence KS4, Oman Mountains, Sultanate of Oman

GeoArabia ◽  
2013 ◽  
Vol 18 (4) ◽  
pp. 17-44 ◽  
Author(s):  
Marlene Maria-Louise Haase ◽  
Thomas Aigner

ABSTRACT This study is part of a large-scale outcrop analog study on Middle Permian to Lower Triassic Khuff-equivalent strata in the Oman Mountains, Al Jabal al-Akhdar, Sultanate of Oman. The Khuff outcrop equivalent can be divided into six sequences (Khuff sequences KS6 to KS1, from base to top). The main focus of this study is the description of the internal anatomy of the shoal grainstone bodies in the lower part of Sequence KS4 (“lower KS4”). High-resolution sedimentological logging of three outcrop sections in wadis Sahtan, Bani Awf and Mistal yielded eight lithofacies types that were grouped into five facies associations. Lower KS4 strata were mainly deposited within a “shoal complex” of an epeiric carbonate ramp, resulting in a thick pile of up to 70 m of grainstones that, on first sight, appear relatively homogeneous. However, detailed facies and microfacies analysis revealed their heterogeneous architecture on various scales: (1) Minor changes in depositional environments directly affected the type of carbonate grains (ooids versus peloids/cortoids versus bioclasts), leading potentially to highly variable pore systems (moldic versus interparticle versus intraparticle). (2) Vertically, detailed sequence-stratigraphic analysis revealed a higher-order of cyclicity (“mini-cycles”) on a decimeter- to meter-scale. Four mini-cycle types were recognized. (3) Laterally, facies changes, the amalgamation of grainstone beds and mini-cycle pinch-outs were observed in 2-D correlations on a scale of a few kilometers. These different types of heterogeneities may contribute to varying production rates commonly observed in the subsurface KS4 reservoir.

GeoArabia ◽  
2008 ◽  
Vol 13 (3) ◽  
pp. 39-120 ◽  
Author(s):  
Peter Homewood ◽  
Philippe Razin ◽  
Carine Grélaud ◽  
Henk Droste ◽  
Volker Vahrenkamp ◽  
...  

ABSTRACT This field guide describes eleven outcrops of the Natih Formation in the Al Jabal al Akhdar-Jabal Shams and Adam Foothills areas, not far from Nizwa, at the foot of the Oman Mountains. The outcrops have been chosen for their accessibility, as well as for the fairly complete picture of the Natih Formation, which they piece together. To visit all eleven outcrops requires several days and the use of 4-wheel-drive vehicles, but the locations offer no serious physical difficulty, nor long hiking, to gain access. The outcrop descriptions follow in stratigraphic order from the lower to the upper Natih members, roving back-and-forth across the outcrop area. Much of the detailed account of the sedimentology and stratigraphy of the Natih that has been used as the basis of this field guide, has been given previously by van Buchem et al. (1996, 2002), Grélaud (2005), Schwab et al. (2005) and Grélaud et al. (2006). The observations and interpretations given here come in part from those studies, but this paper is also largely the product of a subsequent project that was carried out for the Fahud Studies Team of Petroleum Development Oman (PDO), to provide detailed sedimentology and high-resolution sequence stratigraphy of the Natih Formation for further development of the Fahud field (Homewood et al. 2006). In this respect, this field guide is not so much intended to be an original contribution in terms of the science concerning the Natih Formation. The intent is to provide the ways-and-means for all to gain a first-hand personal understanding of the rocks we have enjoyed working on. Following the outcrop descriptions, a general section provides a discussion on facies and facies associations in terms of the constraints of sequence stratigraphy, sea-level change and clay influx on the carbonate factory. With the incorporation of limited subsurface seismic and well data, geobodies and depositional assemblages, the three-dimensional objects that form the stratigraphic packages at outcrop and seismic scales, respectively, are also discussed. Facies are thus interpreted not only in terms of depositional environments, but are also placed within both geometrical (geobody, depositional assemblage) and sequence-stratigraphic frameworks. In the conclusion, it is argued that a deeper understanding of the Natih Formation has been gained by comparison of outcrop data with subsurface data, and by contrast with modern analogs. The detail required to apply what was learned from outcrop to the nearby subsurface, in a practical manner (but also properly to reconstruct the successive Natih scenarios), requires building several facies models. This is in contrast to giving a single composite picture of Natih facies distribution in space and time, under one single facies model.


GeoArabia ◽  
2013 ◽  
Vol 18 (4) ◽  
pp. 179-218 ◽  
Author(s):  
Lisa Walz ◽  
Thomas Aigner ◽  
Bastian Koehrer

ABSTRACT The Khuff Formation is a major producer of non-associated gas and an exploration target in the Middle East. The Middle Permian to Lower Triassic Khuff carbonates were deposited on a gently inclined epeiric carbonate ramp, which formed on the margin of the Neo-Tethys Ocean. The formation represents a supersequence consisting of transgressive-regressive sequences KS6 to KS1 from oldest to youngest. This paper focuses on a detailed sedimentological analysis of Khuff Sequence KS5 in outcrops in Al Jabal al-Akhdar in the Oman Mountains, Sultanate of Oman. Based on the sedimentological analysis of five outcrop sections, 11 facies types were identified in KS5. These were grouped into six facies associations, which represent environments ranging from a tidal flat to offshoal. Based on the 1-D analysis of sequences and their stacking patterns, 2-D correlations were constructed on a scale of several tens of kilometers. These correlations were used to build the framework for 3-D facies models. In contrast to the typical “layer-cake”-type Upper Khuff sequences KS4 to KS1 in terms of facies associations and cyclicity prominent lateral facies association changes and thickness variations are common in KS5, which makes correlation challenging. Different correlation strategies were tested, all resulting in complex cycle and stratal geometries with cycle pinch-outs and apparent cycle set downlaps/onlaps. Due to the dynamic depositional changes throughout KS5, the lateral extent of shoal-associated grainstones is limited. The appearance of these potential reservoir bodies is mainly governed by paleogeography and stratigraphic position. The observed depositional patterns represent significant variations from a rather simple “layer-cake”-type stratigraphic architecture and are possibly due to effects of differential subsidence on a subregional scale. This study contributes to a more detailed understanding of the Lower Khuff’s reservoir distribution and continuity, which is a key to ensuring future success in Khuff exploration and the efficient recovery in producing fields.


GeoArabia ◽  
2010 ◽  
Vol 15 (2) ◽  
pp. 91-156 ◽  
Author(s):  
Bastian Koehrer ◽  
Michael Zeller ◽  
Thomas Aigner ◽  
Michael Poeppelreiter ◽  
Paul Milroy ◽  
...  

ABSTRACT The Middle Permian to Lower Triassic Khuff Formation is one of the most important reservoir intervals in the Middle East. This study presents a sequence stratigraphic analysis of the Khuff Formation of a well-exposed outcrop in the Oman Mountains, which may provide a reference section for correlations across the entire Middle East. On the Saiq Plateau of the Al Jabal al-Akhdar, the Permian Upper Saiq Formation is time-equivalent to the Lower and Middle Khuff Formation (K5–K3 reservoir units in Oman). The Permian section is dominated by graded skeletal and peloidal packstones and cross-bedded grainstones with a diverse marine fauna. The Lower Mahil Member (Induan Stage), time-equivalent to the Upper Khuff Formation (K2–K1 reservoir units in Oman), is dominated by grainstones composed of microbially-coated intra-clasts and ooids. In general, the studied outcrop is characterized by a very high percentage of grain-dominated textures representing storm-dominated shoal to foreshoal deposits of a paleogeographically more distal portion of the Khuff carbonate ramp. A sequence-stratigraphic analysis was carried out by integrating lithostratigraphic marker beds, facies cycles, bio- and chemostratigraphy. The investigated outcrop section was subdivided into six third-order sequences, named KS 6 to KS 1. KS 6–KS 5 are interpreted to correspond to the Murgabian to Midian (ca. Wordian to Capitanian) stages. KS 4-Lower KS 2 correspond to the Dzhulfian (Wuchiapingian) to Dorashamian (Changhsingian) stages. Upper KS 2–KS 1 represent the Triassic Induan stage. Each of the six sequences was further subdivided into fourth-order cycle sets and fifth-order cycles. The documentation of this outcrop may contribute to a better regional understanding of the Khuff Formation on the Arabian Platform.


2019 ◽  
Vol 156 (10) ◽  
pp. 1715-1741 ◽  
Author(s):  
Jake Breckenridge ◽  
Angelos G. Maravelis ◽  
Octavian Catuneanu ◽  
Kevin Ruming ◽  
Erin Holmes ◽  
...  

AbstractAn integrated study of sedimentological, sequence-stratigraphic and palaeodispersal analysis was applied to the Upper-Permian clastic sedimentary succession in the Northern Sydney Basin, Australia. The succession is subdivided into fifteen facies and three facies associations. The facies associations are further subdivided into eight sub-facies associations. The sedimentary evolution involves progradation from delta-front to delta-plain to fluvial depositional environments, with a significant increase in sediment grain size across the unconformable contact that separates the deltaic from the overlying fluvial system. In contrast to the delta front that is wave/storm- and/or river-influenced, the delta plain is significantly affected by tides, with the impact of tidal currents decreasing up-sequence in the delta plain. The general lack of wave-influenced sedimentary structures suggests low wave energy in the delta plain. The abrupt termination of the tidal impact in the fluvial realm relates to the steep topographic gradients and high sediment supply, which accompanied the uplift of the New England Orogen. The sequence-stratigraphic framework includes highstand (deltaic forest and topset) and lowstand (fluvial topset) systems tracts, separated by a subaerial unconformity. In contrast to most of the mud-rich modern counterparts, this is an example of a sand-rich tidally influenced deltaic system, developed adjacent to the source region. This investigation presents a depositional model for tidal successions in regions of tectonic uplift and confinement.


GeoArabia ◽  
2005 ◽  
Vol 10 (3) ◽  
pp. 17-44 ◽  
Author(s):  
Elena Morettini ◽  
Anthony Thompson ◽  
Gregor Eberli ◽  
Keith Rawnsley ◽  
Roeland Roeterdink ◽  
...  

ABSTRACT In the Fahud field of Oman, the integration between hierarchies of sequence stratigraphic units and fracture systems has proven to be crucial to explain the distribution of flow and mechanical units. The study focused on the Upper Cretaceous, Albian to Lower Cenomanian Natih e unit (Natih Formation, Wasia Group), a 170-mthick carbonate sequence/reservoir, which exhibits heterogeneities in both facies and reservoir quality. Based on a core-derived high-resolution sequence stratigraphic analysis, the Natih e reservoir can be subdivided into four orders of depositional cycles (from 6th- to 3rd-order). Each cycle consists of a transgressive and regressive hemicycle with characteristic facies and rock properties. The facies and diagenetic overprint of the higher-order cycles vary according to their position within the 3rd-order sequences. Analysis of core, borehole images, seismic, tracer and production data indicate a hierarchy of fractures and faults that seems to follow the stratigraphic subdivisions. A relationship between depositional and diagenetic architecture of the cycles, and the aforementioned data, led to the identification of mechanical layering and stratigraphy within the reservoir. This finding was validated and supported by the successful history match of the three-phase production data within the dynamic model of the reservoir. The combination of sequence and mechanical stratigraphy provides a framework for the correlation of facies and mechanical units across the field. Furthermore, the facies and mechanical units are related to reservoir quality and fracture distribution for consistent upscaling into large-scale reservoir models. Through close co-operation between geologists and reservoir engineers utilising dynamic data, it was possible to determine the most appropriate scale for flow and ensure that such a scale was then used as input for dynamic modelling and for planning of the future exploitation of the Fahud field. As a result of this study, Petroleum Development Oman (PDO) has evaluated a 20% increase in risked reserves, and a 25% reduction of well costs.


ISRN Geology ◽  
2013 ◽  
Vol 2013 ◽  
pp. 1-11 ◽  
Author(s):  
Ntokozo Malaza ◽  
Kuiwu Liu ◽  
Baojin Zhao

The late Palaeozoic coal-bearing Madzaringwe Formation of the Karoo Supergroup in the Tshipise-Pafuri Basin in the Limpopo Province, South Africa, records part of the infill of a passive continental margin terrain. Lithofacies analysis was performed with a view to deduce the nature of depositional environments of the Formation. Sedimentological and sequence stratigraphic evidence indicates that this unit represents a complex siliciclastic facies that reflects a fluvial paleodepositional environment. Eleven facies, which were grouped into five facies associations, were recognised. The base of the Madzaringwe Formation (Lower Member) represents a sequence deposited by braided channels. The coal deposits represent flood plain and swamp deposits, which is characterised by shale, thick coal seams, siltstone, and sandstone. The Middle Member is characterised by both clast and matrix supported conglomerates, major tubular and lenticular sandstones, and finely calcareous, micaceous siltstone. The deposition represents a sequence being formed from fluvial and particularly braided channels. The crudely stratified, coarse to pebbly sandstone indicates channel lag deposits within a heavy loaded fluvial system. The fine-grained sandstone represents deposition by shift channel and side bar deposits during lower flow conditions. The Upper Member is characterised by facies associations similar to the Lower Member, representing a new depositional cyclothem.


2012 ◽  
Vol 52 (2) ◽  
pp. 703
Author(s):  
Jim Raggatt ◽  
Tim Gibbons ◽  
James Stockley ◽  
Ian Deighton

In addition to the large gas fields already discovered in the Browse Basin, there is considerable scope for further exploration success because this basin holds an estimated recoverable reserve of 30 tcf gas. TGS has completed the Browse Basin Sequence stratigraphic study to specifically understand the many depositional environments of this basin by a comprehensive analysis of 75 key wells all tied to extensive 2D seismic interpretation. With a standardized lithostratigraphic and chronostratigraphic interpretation, each well has a full 3rd order sequence boundary record across all logged sections, and was subsequently assigned detailed gross depositional environments (GDE). Tied to the GDE’s are specific and highly detailed facies associations, displayed in 26 facies maps, thereby building a robust multi-sequence geological model constrained by sequences. These basin-wide facies maps delineate known source, reservoir and seal and propose where—within the robust geological model—potentially similar facies have been deposited and preserved. This extended abstract is delivered by the Facies Map Browser (FMB), a unique product, containing all data and interpreted maps. The Browse Basin FMB allows users to quickly understand the basin-wide depositional history and interpreted facies. With the multi-well and multi-source background database, the FMB product has proven to shorten the exploration cycle by its sheer level of detail and wide ranging interpretation.


Geosciences ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 273
Author(s):  
Sean Melehan ◽  
Chrysanthos Botziolis ◽  
Angelos G. Maravelis ◽  
Octavian Catuneanu ◽  
Kevin Ruming ◽  
...  

This study integrates sedimentological and stratigraphic insights into the Upper Permian sedimentary rocks of the Wittingham, Tomago and Newcastle Coal Measures in the Northern Sydney Basin, Australia. Facies analysis documented fifteen facies that belong to seven facies associations. These facies associations correspond to different depositional environments and sub-environments including prodelta, delta-front, upper, lower delta-plain and fluvial. The stratigraphic development points to a shallowing upward trend and is reflected with fluvial deposits sitting on top of the deltaic deposits. The fluvio-deltaic contact is represented by an unconformity and displays an upward increase in sediment caliber. The delta front is mainly controlled by wave, storms- and/or river currents, even though the contribution of tides also occurs in the form of sedimentary structures that suggest tidal influence. In contrast, prodelta and delta-plain are significantly modulated by tidal currents. The impact of tides in the delta plain is fading away upward and therefore, the upper delta plain is much less impacted compared to the lower delta plain. The low abundance of wave ripples suggests that the wave action was not very important in the delta plain. Steep topographic gradients and increased sediment input are suggested, based on the limited or absent evidence of tides in the fluvial realm, related to the growing New England Orogen. In sequence stratigraphic terms, the deltaic system accumulated during highstand normal regression, while the deposition of the overlying fluvial system occurred during lowstand normal regression. The two systems are separated by a subaerial unconformity developed during an intervening forced regression. Short periods of transgression are inferred from the presence of higher frequency cycles in the delta-front.


2017 ◽  
Vol 9 (1) ◽  
Author(s):  
Rui Yuan ◽  
Changmin Zhang ◽  
Yong Tang ◽  
Jianhua Qu ◽  
Xudong Guo ◽  
...  

AbstractLarge-scale conglomerate fan-delta aprons were typical deposits on the slope of Mahu Depression during the Early Triassic. Without outcrops, it is difficult to study the lithofacies only by examining the limited cores from the main oil-bearing interval of the Baikouquan Formation. Borehole electrical imaging log provides abundant high-resolution geologic information that is obtainable only from real rocks previously. Referring to the lithology and sedimentary structure of cores, a case study of fan-deltas in the Lower Triassic Baikouquan Formation of the Mahu Depression presents a methodology for interpreting the complicated lithofacies utilizing borehole electrical images. Eleven types of lithologies and five types of sedimentary structures are summarized in borehole electrical images. The sediments are fining upward from gravel to silt and clay in the Baikouquan Formation. Fine-pebbles and granules are the main deposits in T


Sign in / Sign up

Export Citation Format

Share Document