scholarly journals Evolution, paleoecology and sequence architecture of an Eocene carbonate ramp, southeast Zagros Basin, Iran

GeoArabia ◽  
2013 ◽  
Vol 18 (4) ◽  
pp. 49-80
Author(s):  
Afshin Zohdi ◽  
Reza Mousavi-Harami ◽  
Seyed Ali Moallemi ◽  
Asadollah Mahboubi ◽  
Adrian Immenhauser

ABSTRACT We document and discuss the results of detailed fieldwork, facies analysis and the subsequent integration of paleoecological evidence from the Middle Eocene carbonate ramp succession in the southeast Zagros Basin (Jahrum Formation). A combination of a sea-level fall and tectonic and diapiric basement uplift favored the initiation of the Jahrum carbonate platform. The lower portions are affected by pervasive, probably early diagenetic dolomitization, whilst the upper Jahrum consists mainly of limestone. Here, the focus is on the limestone portions of the Jahrum Formation. Based on the abundance, diversity and rapid evolutionary turnover of the alveolinids and nummulitids, the limestone intervals of the Jahrum Formation are interpreted for the upper Middle Eocene (Bartonian). The Jahrum Formation is capped by a major unconformity and overlain by the Lower Oligocene mixed clastic/carbonate Razak Formation. Based on data from field sections, eight facies associations and a series of sub-types have been established, which correspond to inner-, middle-and outer-ramp depositional environments. In their overall context, these data show a southward-dipping inner-ramp-to-basin transect. Towards the Coastal Fars (e.g. Hulur-01 Well) the Jahrum grades laterally into deep-marine Pabdeh foredeep shale units. Based on facies analysis and paleoecological evidence from larger benthic foraminifera, a major transgressive-regressive pattern is recognized in all outcrop sections of the Jahrum. The lowermost stratigraphic units of the formation are here interpreted as a distally steepened ramp. Evidence comes from abundant allochthonous shallow-water facies in the distal, deeper-ramp setting. Shallow-water carbonate clasts were exported towards the basin, a feature that is probably linked to relative sea-level fall control. Furthermore, local to regional basement instabilities by salt diapir-related basement reorganization was arguably of significance. Upsection, evidence is found that the ramp system evolved from a distally steepened to a homoclinal geometry with an overall very gentle slope geometry during the Late Bartonian. The data shown here are significant for those concerned with the Paleogene evolution of the southeast Zagros Basin and provide a well-exposed case example of a Middle Eocene carbonate ramp factory.

2009 ◽  
Vol 60 (2) ◽  
pp. 165-179 ◽  
Author(s):  
Grigor Heba ◽  
Gilbert Prichonnet ◽  
Abderrazak El Albani

Meteoric diagenesis of Upper Cretaceous and Paleocene-Eocene shallow-water carbonates in the Kruja Platform (Albania): geochemical evidenceIn the central part of the Kruja Platform (Albania) located in the Apulian passive margin, geochemical analyses (calcimetry, Sr, REE and isotopic, δ13C and δ18O) coupled with sedimentological and sequence stratigraphic study were carried out on Upper Cretaceous (CsB4, CsB5, CsB6 Biozones) and Paleocene to Middle Eocene shallow-water carbonates that crop out in the Kruje-Dajt massif (L'Escalier section) and Makareshi massif (La Route section). The lower values in Sr contents, the homogeneous δ18O values in both sections and the covariance between δ13C and δ18O values (La Route section) are attributed to diagenesis influence by a meteoric water-buffer system, supported by petrographic observations. Moreover, a new exposure surface during the Late Cretaceous time (between CsB5 and CsB6 Biozones) may be proposed according to the low or negative excursions of Sr values, the negative excursions of isotopic values in both sections and a positive peak of normalized REE values (La Route section). These variations correlate with the geochemical signal reported by the decreasing strontium isotope values of rudist shells in the Island of Brač carbonate platform (Apulia domain) during the late Middle Campanian (77.3 Ma). Also, this continental exposure is consistent with the global sea-level fall reported from the Boreal Realm, North Atlantic, and the southern Tethyan margin. This geochemical evidence is a complementary tool for the sedimentological analysis and suggests a maximum regression (a sea-level fall) at the transition between the CsB5 and CsB6 Biozones. The high values of Sr content in Middle Eocene carbonates (L'Escalier section) reflect changes in depositional environment from restricted to open marine conditions. REE values increase through transgressive systems tract, characterized by small increase of detrital input. However, anomalies of certain values in both sections suggest disturbances linked either to the changes in clay input and to diagenetic modifications. Peaks in dolomite content are linked with regressive episodes or tendencies, and dolomitic facies, as indicated by intertidal-supratidal depositional environments.


2001 ◽  
Vol 172 (1) ◽  
pp. 85-98 ◽  
Author(s):  
Philippe Landrein ◽  
Jean-Paul Loreau ◽  
Jean-Jacques Fleury

Abstract The reliability of biostratigraphic correlations in neritic carbonate platforms is often questioned because the benthic fauna on which biozonation is based are particularly sensitive to environmental change. It is crucial to know whether a population change corresponds strictly to a facies change. Conversely, there arise the questions of determining how populations are renewed over time and how new species appear even if facies associations remain unchanged. This is the case with the Gavrovo-Tripolitza zone of Greece, an isolated shallow carbonate platform surrounded by two oceanic domains (Pindos-Olonos Zone and Ionian Zone). The absence or scarcity of faunas generally used in Upper Cretaceous biostratigraphy has led to the use of local biozonation instead, based on faunas endemic to Adriatico-Aegean platforms. The final two biozones based on Rhapydioninidae foraminifera are: - CsB6 (Upper Campanian-Lower Maastrichtian): the "Murciella biozone" is the total range zone of all Rhaphydionininae except for Rhapydionina liburnica; - CsB7 (Upper Maastrichtian): the total range zone of R. Liburnica. The purpose of this paper is to test the biostratigraphic value of the benthic foraminifera by comparing the distribution of the biostratigraphic limits with the distribution of time-surfaces. These time-surfaces are established from sedimentological analysis and sequences stratigraphy. The Upper Cretaceous of the Gavrovo platform is formed by stacked shallowing-upward parasequences which are usually capped by an exposure surface. Most of them were exposed in supratidal environments and dolomitized to a greater or lesser extent. Some underwent continental diagenesis as recorded by karsts, microkarsts and karstic fillings (fig. 5), root traces, alveolar-septal structures, microcodiums, pseudomicrocodiums, pedogenetic pseudomicrokarsts and continental stromatolithic laminations. Although outcrops are great distances apart and located on different structural blocks, they record a major discontinuity within the Maastrichtian. It is characterized by continental exposure, a change in the main type of parasequences, and disruption of the parasequence stacking pattern as evidenced on Fischer plots. In each outcrop, limestones exhibiting continental diagenesis are cut by an erosional surface. This surface is proposed as a local maximum of regression and a transgressive surface. On a peculiar outcrop, the surface marks the inflection point between thinning-upward and thickening-upward parasequence trends on the Fischer plot. In proximal platforms, such a point can be interpreted as corresponding to a local maximum of regression and this surface is also a transgressive surface. The same features occurred in many other outcrops and show that the entire platform was subaerially exposed. Similar episodes of exposure associated with continental diagenesis are reported for Maastrichtian deposits of other Adriatico-Aegean platforms. Continental exposure and associated erosion is currently interpreted as a result of a fall in relative sea level caused either by uplift or by eustatic sea level fall. Successive shallowing up parasequences showing final exposure and continental diagenesis would imply an impossible yo-yo type subsidence. Accordingly, the proposed maximum of regression is thought to be eustatically controlled. Moreover, the maximum of regression caps CsB6 parasequences controlled by allocyclic mechanisms as indicated by similar stacking patterns in different and remote outcrops. This strongly suggests CsB6 sedimentation was eustatically controlled and the relevant maximum of regression is proposed as a time-surface. The distribution of foraminifer populations in the outcrops studied here indicates that the Rhapydionininae of biozone CsB6 do not occur above the maximum of regression. The regressive maximum clearly coincides with the disappearance of foraminifer species whereas the subsequent transgressive episode is characterized by the emergence of just one species. And yet, population renewal is not related to a fundamental change in the platform environment: very shallow water facies association below and above the maximum regression surface are identical. This supports the hypothesis that sea level variations were the cause of faunal extinction and renewal. It is evidenced too that the boundary between the two populations can be used as a time marker. In this case study, the biostratigraphy based on the use of benthic and shallow-water dependent foraminifera is genuinely chronostratigraphic.


2003 ◽  
Vol 140 (2) ◽  
pp. 173-203 ◽  
Author(s):  
MIKAEL CALNER ◽  
LENNART JEPPSSON

Evidence from sedimentology and conodont biostratigraphy is used to reinterpret the mid-Homerian (Late Wenlock) succession on Gotland, Sweden. A new conodont zonation includes from below: the Ozarkodina bohemica longa Zone (including five subzones), the Kockelella ortus absidata Zone and the Ctenognathodus murchisoni Zone (two taxa are named, Ozarkodina bohemica longa and Pseudooneotodus linguicornis). These new zones are integrated with facies in order to correlate strata and infer the major depositional environments and the controls on deposition during the mid-Homerian Mulde Event. Reef-associated and skeletal carbonate deposition predominated before and after the event, i.e. during the uppermost O. s. sagitta Zone and, again, in the C. murchisoni Zone. These periods are characterized by the expansion of reefs and shoal facies across marls in the topmost Slite Group on eastern Gotland and in the lower parts of the Klinteberg Formation on western Gotland, respectively. The intervening O. b. longa and K. o. absidata zones are initially characterized by rapid facies changes, including siliciclastic deposition, and later stabilisation of a carbonate depositional system. The composition of sediments and depositional rates are closely related to the creation and destruction of accommodation space and reflects a classical case of depositional bias of the carbonate and siliciclastic depositional systems. Based on coastline migration, stratal boundaries, and the stratigraphic position of major reef belts, several facies associations can be fitted into a sequence stratigraphic model for platform evolution. A highstand systems tract (HST) situation prevailed prior to, and during the early part of the event; the upper Slite Group including the lower Fröjel Formation. This HST was characterized by prolific skeletal production and regional reef development except for during the latest stage when carbonate production declined at the onset of the Mulde Event. Platform growth was inhibited during a following regressive systems tract (RST) when regional siliciclastic deposition predominated; the Gannarve Member. The subsequent lowstand resulted in regional emersion and karstification, i.e. a complete termination of the platform. The post-extinction transgressive systems tract (TST) is exclusively composed of non-skeletal carbonates; the Bara Member of the Halla Formation. Re-occurrence of reefs and a prolific skeletal production marks platform recovery during a second HST; the remaining Halla and the lower Klinteberg formations. Integration of high-resolution biostratigraphy and sequence stratigraphy reveals that the major physical control on platform evolution was a 5th order eustatic sea-level change during an early part of the Mulde Event, and that the bulk of the strata accumulated when the platform aggraded and prograded during the highstand systems tracts. Thus, Silurian oceanic events and associated sea-level changes had profound impact on the neritic carbonate system. The Gotland-based middle and late Homerian sea-level curve shows two rapid regressions, both leading to truncation of highstand systems tracts. The first lowstand occurred at the very end of the C. lundgreni Chron, and the second at the end of the Co.? ludensis Chron. The intervening interval was characterized by stillstand or possibly slow transgression.


2018 ◽  
Vol 40 (1) ◽  
pp. 53
Author(s):  
K. Getsos ◽  
F. Pomoni-Papaioannou ◽  
A. Zelilidis

Facies analysis of Cretaceous carbonate sequences from the external and central Ionian zone revealed a homoclinal ramp model of evolution. During Berriasian to Valanginian, the carbonate ramp was differentiated to an inner-mid and outer ramp environment, which corresponded to the external and central Ionian zone, respectively, while the main inner ramp environment is assumed that was located in the Pre-Apulian zone. The external Ionian zone (inner-mid ramp) is characterized by muds tones-wackes tones with fragmented echinoderms, bivalves, radiolarians and rare aptychus considered to be deposited below the fairweather wave base (FWWB). Locally, thin graded storm deposits intervene, indicating deposition above the storm weather wave base (SWB). Minor occurrences of packs tonesgrainstones, with fragmented echinoderms, calcareous algae, tubiphytes, lagenid foraminifera and rare ooids occur, as well, considered to be deposited at the lowermost part of the inner ramp, near the constantly agitated fairweather wave base (FWWB). The central Ionian zone (outer ramp) is mainly characterized by mudstones-wackestones with abundant radiolarians and rare calpionellids and calcispheres, considered to be deposited below the storm wave base (SWB). No talus or breccias deposits were observed, during the mentioned time interval, in any part of the studied area. From Hauterivian to Turonian, continual sea-level rise, led to establishment of outer ramp environment in the external Ionian zone, over the previous inner-mid ramp, and outer ramp-basin environment, over the previous outer ramp, in the central Ionian zone. The transition from shallower to deeper conditions is characterized by an overall deposition of mudstones-wackestones with abundant radiolarians rooted in pure micrite. 


2021 ◽  
Author(s):  
Mohammadsadegh Dehghanian

Abstract Asmari Formation is the thick sequence of carbonate sediment in the range of Oligocene-Miocene which is deposited in the foreland basins of the Zagros and is considered as the original and most famous reservoir rock of Zagros basin. To study of lithostratigraphic units and sequence stratigraphy of this Formation, the section in the southeast of Norabad was selected. Field study indicated that Asmari Formation possessed the thickness of 401.5m and included 9 lithostratigraphic units. According to the study of microfacies, Stacking pattern and identification of main sequence level, three depositional sequences including two-second order and one-third order sequence were recognized. The sea-level curve in the studied section indicated that it was correspondence to the global sea level curve. These facies deposited in five environmental sedimentations as follow Open Sea Shelf (Fore Barrier), Bar, Lagoon, Back bar shelf, and Shoal. The environment is part of a carbonate platform that has been formed on an open shelf. In addition, according to the Study of foraminifer dispersion pattern the range of Asmari Formation in Norabad was suggested to be Oligocene (Rupelian- Chattian) to lower Miocene (Aquitanian- Burdigalian).


2016 ◽  
Vol 154 (2) ◽  
pp. 305-333 ◽  
Author(s):  
C. N. WATERS ◽  
P. CÓZAR ◽  
I. D. SOMERVILLE ◽  
R. B. HASLAM ◽  
D. MILLWARD ◽  
...  

AbstractA rationalized lithostratigraphy for the Great Scar Limestone Group of the southeast Askrigg Block is established. The basal Chapel House Limestone Formation, assessed from boreholes, comprises shallow-marine to supratidal carbonates that thin rapidly northwards across the Craven Fault System, onlapping a palaeotopographical high of Lower Palaeozoic strata. The formation is of late Arundian age in the Silverdale Borehole, its northernmost development. The overlying Kilnsey Formation represents a southward-thickening and upward-shoaling carbonate development on a S-facing carbonate ramp. Foraminiferal/algal assemblages suggest a late Holkerian and early Asbian age, respectively, for the uppermost parts of the lower Scaleber Force Limestone and upper Scaleber Quarry Limestone members, significantly younger than previously interpreted. The succeeding Malham Formation comprises the lower Cove Limestone and upper Gordale Limestone members. Foraminiferal/algal assemblages indicate a late Asbian age for the formation, contrasting with the Holkerian age previously attributed to the Cove Limestone. The members reflect a change from a partially shallow-water lagoon (Cove Limestone) to more open-marine shelf (Gordale Limestone), coincident with the onset of marked sea-level fluctuations and formation of palaeokarstic surfaces with palaeosoils in the latter. Facies variations along the southern flank of the Askrigg Block, including an absence of fenestral lime-mudstone in the upper part of the Cove Limestone and presence of dark grey cherty grainstone/packstone in the upper part the Gordale Limestone are related to enhanced subsidence during late Asbian movement on the Craven Fault System. This accounts for the marked thickening of both members towards the Greenhow Inlier.


1989 ◽  
Vol 26 (11) ◽  
pp. 2292-2304 ◽  
Author(s):  
Stephen R. Westrop

The Bison Creek and Mistaya formations form the youngest Cambrian sedimentary grand cycle exposed in Banff and Jasper national parks. The shaly half-cycle of the Bison Creek Formation records the displacement of a carbonate bank during a major rise in sea level that can be identified in other parts of North America. Lithofacies of the Bison Creek Formation fall into three recurrent associations that represent sedimentation in shallow, subtidal, storm-dominated shelf settings. The Mistaya Formation records the reestablishment of carbonate bank deposition, probably due to a decrease in the rate of sea-level rise, and includes two facies associations that represent a mosaic of shallow subtidal to supratidal environments. The grand cycle was terminated by a sea-level rise, possibly eustatic in nature, that drowned the carbonate platform. The overlying shales, mudstones, packstones, grainstones, and rudstones of the Survey Peak Formation mark a return to subtidal, storm-dominated shelf conditions.


Sign in / Sign up

Export Citation Format

Share Document