scholarly journals Simultaneous Determination of Mebeverine Hydrochloride and Sulpiride Using the First Derivatives of Ratio Spectra and Chemometric Methods

2005 ◽  
Vol 21 (8) ◽  
pp. 985-989 ◽  
Author(s):  
S. I. M. ZAYED
2021 ◽  
Vol 19 (1) ◽  
pp. 205-213
Author(s):  
Hany W. Darwish ◽  
Abdulrahman A. Al Majed ◽  
Ibrahim A. Al-Suwaidan ◽  
Ibrahim A. Darwish ◽  
Ahmed H. Bakheit ◽  
...  

Abstract Five various chemometric methods were established for the simultaneous determination of azilsartan medoxomil (AZM) and chlorthalidone in the presence of azilsartan which is the core impurity of AZM. The full spectrum-based chemometric techniques, namely partial least squares (PLS), principal component regression, and artificial neural networks (ANN), were among the applied methods. Besides, the ANN and PLS were the other two methods that were extended by genetic algorithm procedure (GA-PLS and GA-ANN) as a wavelength selection procedure. The models were developed by applying a multilevel multifactor experimental design. The predictive power of the suggested models was evaluated through a validation set containing nine mixtures with different ratios of the three analytes. For the analysis of Edarbyclor® tablets, all the proposed procedures were applied and the best results were achieved in the case of ANN, GA-ANN, and GA-PLS methods. The findings of the three methods were revealed as the quantitative tool for the analysis of the three components without any intrusion from the co-formulated excipient and without prior separation procedures. Moreover, the GA impact on strengthening the predictive power of ANN- and PLS-based models was also highlighted.


2011 ◽  
Vol 4 (3) ◽  
pp. 259-263 ◽  
Author(s):  
Yousry M. Issa ◽  
Sayed I.M. Zayed ◽  
Ibrahim H.I. Habib

2015 ◽  
Vol 98 (5) ◽  
pp. 1215-1225 ◽  
Author(s):  
Maha F Abdel-Ghany ◽  
Omar Abdel-Aziz ◽  
Miriam F Ayad ◽  
Neven N Mikawy

Abstract Accurate, reliable, and sensitive spectrophotometric and chemometric methods were developed for simultaneous determination of octinoxate (OMC), oxybenzone (OXY), and octocrylene (OCR) in a sunscreen formulation without prior separation steps, including derivative ratio spectra zero crossing (DRSZ), double divisor ratio spectra derivative (DDRD), mean centering ratio spectra (MCR), and partial least squares (PLS-2). With the DRSZ technique, the UV filters could be determined in the ranges of 0.5–13.0, 0.3–9.0, and 0.5–9.0 μg/mL at 265.2, 246.6, and 261.8 nm, respectively. By utilizing the DDRD technique, UV filters could be determined in the above ranges at 237.8, 241.0, and 254.2 nm, respectively. With the MCR technique, the UV filters could be determined in the above ranges at 381.7, 383.2, and 355.6 nm, respectively. The PLS-2 technique successfully quantified the examined UV filters in the ranges of 0.5–9.3, 0.3–7.1, and 0.5–6.9 μg/mL, respectively. All the methods were validated according to the International Conference on Harmonization guidelines and successfully applied to determine the UV filters in pure form, laboratory-prepared mixtures, and a sunscreen formulation. The obtained results were statistically compared with reference and reported methods of analysis for OXY, OMC, and OCR, and there were no significant differences with respect to accuracy and precision of the adopted techniques.


Sign in / Sign up

Export Citation Format

Share Document