scholarly journals OPTIMIZATION OF WATERFLOODING CONSIDERING THE IMPACT OF DISLODGED RESERVOIR ROCK PARTICLES DURING LOW SALINITY WATER INJECTION

2019 ◽  
Vol 11 (3) ◽  
pp. 331-340
Author(s):  
Bassey Ekeng ◽  
◽  
Richard Antigha ◽  
Obio Ekpe ◽  
◽  
...  
2021 ◽  
Author(s):  
Mohamed Alhammadi ◽  
Shehadeh Masalmeh Masalmeh ◽  
Budoor Al-Shehhi ◽  
Mehran Sohrabi ◽  
Amir Farzaneh

Abstract This study aims to compare the roles of rock and crude oil in improving recovery by low salinity water injection (LSWI) and, particularly, to explore the significance of micro-dispersion formation in LSWI performance. Core samples and crude oil were taken from two carbonate reservoirs (A and B) in Abu Dhabi. The oil samples were selected such that one of them would form micro-dispersion when in contact with low salinity brine while the other would not. A series of coreflood experiments was performed in secondary and tertiary modes under reservoir conditions. First, a core sample from reservoir A was initialized and aged with crude oil from reservoir A and a core sample from reservoir B was initialized and aged with crude oil from reservoir B. The cores were then swapped, and the performance of low salinity injection was tested using rock from reservoir A and crude from reservoir B, and vice versa. For the first set of experiments, we found that the crude oil sample capable of forming micro-dispersion (we call this oil "positive", from reservoir A) resulted in extra oil recovery in both secondary and tertiary LSWI modes, compared to high salinity flooding. Moreover, in the secondary LSWI mode we observed significant acceleration of oil production, with higher ultimate oil recovery (12.5%) compared to tertiary mode (6.5%). To ensure repeatability, the tertiary experiment was repeated, and the results were reproduced. The core flood test performed using "negative" crude oil that did not form micro-dispersion (from reservoir B) showed no improvement in oil recovery compared to high salinity waterflooding. In the "cross-over" experiments (when cores were swapped), the positive crude oil showed a similar improvement in oil recovery and the negative crude oil showed no improvement in oil recovery even though each of them was used with a core sample from the other reservoir. These results suggest that it is the properties of crude oil rather than the rock that play the greater role in oil recovery. These results suggest that the ability of crude oil to form micro-dispersion when contacted with low salinity water is an important factor in determining whether low salinity injection will lead to extra oil recovery during both secondary and tertiary LSWI. The pH and ionic composition of the core effluent were measured for all experiments and were unaffected by the combination of core and oil used in each experiment. This work provides new experimental evidence regarding real reservoir rock and oil under reservoir conditions. The novel crossover approach in which crude oil from one reservoir was tested in another reservoir rock was helpful for understanding the relative roles of crude oil and rock in the low salinity water mechanism. Our approach suggests a simple, rapid and low-cost methodology for screening target reservoirs for LSWI.


2017 ◽  
Vol 20 (01) ◽  
pp. 118-133 ◽  
Author(s):  
Emad W. Al-Shalabi ◽  
Haishan Luo ◽  
Mojdeh Delshad ◽  
Kamy Sepehrnoori

2015 ◽  
Author(s):  
M. Sohrabi ◽  
P. Mahzari ◽  
S. A. Farzaneh ◽  
J. R. Mills ◽  
P. Tsolis ◽  
...  

2021 ◽  
Vol 229 ◽  
pp. 116127
Author(s):  
Krishna Raghav Chaturvedi ◽  
Durgesh Ravilla ◽  
Waquar Kaleem ◽  
Prashant Jadhawar ◽  
Tushar Sharma

2020 ◽  
Vol 9 (1) ◽  
pp. 17-35
Author(s):  
Adityawarman Adityawarman ◽  
Faridh Afdhal Aziz ◽  
Prasandi Abdul Aziz ◽  
Purnomo Yusgiantoro ◽  
Steven Chandra

There are currently two fiscal regimes designated for resource allocation in Indonesia’s upstream oil and gas industry, the Production Sharing Contract Cost Recovery (PSC) and Gross Split. The Gross Split in the form of additional percentage split is designed to encourage contractors to implement Enhanced Oil Recovery (EOR) in mature fields. Low Salinity Water Injection (LSWI) is an emerging EOR technique in which the salinity of the injected water is controlled. It has been proven to be relatively cheaper and has simpler implementations than other EOR options in several countries. This study evaluates the LSWI project’s economy using PSC and Gross Split and then to be compared to conventional waterflooding (WF) project’s economy. There are four cases on Field X that are simulated using a commercial simulator for 5 years. The cases are evaluated under PSC and Gross Split to calculate the project’s economy. The economic indicators that will be evaluated are the Net Present Value (NPV) and sensitivity analysis is also conducted to observe the change of NPV. The parameters for sensitivity analysis are Capital Expenditure (CAPEX), Operating Expenditure (OPEX), Oil Production, and Oil Price. It is found that LSWI implementation using Gross Split is more profitable than PSC. The parameters that affects NPV the most in all PSC cases are the oil production and oil price. On the other hand, in Gross Split cases, the oil production is the parameter that affects NPV the most, followed by oil price. The novelty of this study is in the comparison of project’s economy between WF and LSWI using two different fiscal regimes to see whether Gross Split is more profitable than PSC on EOR implementation, specifically the LSWI at Field X.


Sign in / Sign up

Export Citation Format

Share Document