Downhole System Enables Real-Time Reservoir-Fluid-Distribution Mapping

2020 ◽  
Vol 72 (09) ◽  
pp. 60-61
Author(s):  
Judy Feder
2020 ◽  
Author(s):  
Franco Bottazzi ◽  
Paolo Dell’Aversana ◽  
Claudio Molaschi ◽  
Germana Gallino ◽  
Carlo Carniani ◽  
...  

2021 ◽  
Author(s):  
Muhamad Aizat Kamaruddin ◽  
Ayham Ashqar ◽  
Muhammad Haniff Suhaimi ◽  
Fairus Azwardy Salleh

Abstract Uncertainties in fluid typing and contacts within Sarawak Offshore brown field required a real time decision. To enhance reservoir fluid characterisation and confirm reservoir connectivity prior to well final total depth (TD). Fluid typing while drilling was selected to assure the completion strategy and ascertain the fluvial reservoir petrophysical interpretation. Benefiting from low invasion, Logging While Drilling (LWD) sampling fitted with state of ART advanced spectroscopy sensors were deployed. Pressures and samples were collected. The well was drilled using synthetic base mud. Conventional logging while drilling tool string in addition to sampling tool that is equipped with advanced sensor technology were deployed. While drilling real time formation evaluation allowed selecting the zones of interest, while fluid typing was confirmed using continually monitored fluids pump out via multiple advanced sensors, contamination, and reservoir fluid properties were assessed while pumping. Pressure and sampling were performed in drilling mode to minimise reservoir damage, and optimise rig time, additionally sampling while drilling was performed under circulation conditions. Pressures were collected first followed by sampling. High success in collecting pressure points with a reliable fluid gradient that indicated a virgin reservoir allowed the selection of best completion strategy without jeopardising reserves, and reduced rig time. Total of seven samples from 3 different reservoirs, four oil, and three formation water. High quality samples were collected. The dynamic formation evaluation supported by while drilling sampling confirmed the reservoir fluid type and successfully discovered 39ft of oil net pay. Reservoir was completed as an oil producer. The Optical spectroscopy measurements allowed in situ fluid typing for the quick decision making. The use of advanced optical sensors allowed the sample collection and gave initial assessment on reservoir fluids properties, as a result cost saving due to eliminating the need for additional Drill Stem Test (DST) run to confirm the fluid type. Sample and formation pressures has confirmed reservoir lateral continuity in the vicinity of the field. The reservoir developed as thick and blocky sandstone. Collected sample confirmed the low contamination levels. Continuous circulation mitigated sticking and potential well-control risks. This is the first time in surrounding area, advanced optical sensors are used to aid LWD sampling and to finalize the fluid identification. The innovative technology allowed the collection of low contamination. The real-time in-situ fluid analysis measurement allowed critical decisions to be made real time, consequently reducing rig downtime. Reliable analysis of fluid type identification removed the need for additional run/service like DST etc.


2019 ◽  
Author(s):  
V. Franzi ◽  
C. Robert ◽  
A. Shoeibi ◽  
R. Galimberti ◽  
E. Ndonwie Mahbou ◽  
...  

2016 ◽  
Author(s):  
Katherine J. Dobson ◽  
Sophia B. Coban ◽  
Sam A. McDonald ◽  
Joanna Walsh ◽  
Robert Atwood ◽  
...  

Abstract. A variable volume flow cell has been integrated with state-of-the-art ultra-high speed synchrotron x-ray tomography imaging. The combination allows the first real time (sub-second) capture of dynamic pore (micron) scale fluid transport processes in 4D (3D + time). With 3D data volumes acquired at up to 20 Hz, we perform in situ experiments that capture high frequency pore-scale dynamics in 5–25 mm diameter samples with voxel (3D equivalent of a pixel) resolution of 2.5 to 3.8 µm. The data are free from motion artefacts, can be spatially registered or collected in the same orientation making them suitable for detailed quantitative analysis of the dynamic fluid distribution pathways and processes. The method presented here are capable of capturing a wide range of high frequency non equilibrium pore-scale processed including wetting, dilution, mixing and reaction phenomena, without sacrificing significant spatial resolution. As well as fast streaming (continuous acquisition) at 20 Hz, it also allows larger-scale and longer term experimental runs to be sampled intermittently at lower frequency (time-lapse imaging); benefiting from fast image acquisition rates to prevent motion blur in highly dynamic systems. This marks a major technical breakthrough for quantification of high frequency pore scale processes: processes that are critical for developing and validating more accurate multiscale flow models through spatially and temporally heterogeneous pore networks.


2020 ◽  
Author(s):  
Ibnu Hafidz Arief ◽  
Tao Yang
Keyword(s):  

Author(s):  
Kurt Strack ◽  
Sofia Davydycheva ◽  
Herminio Passalacqua ◽  
Maxim Y. Smirnov ◽  
Xiayu Xu

One of the key geophysical technologies for the energy industry during energy transition to zero footprint is fluid imaging. Knowledge of fluid distribution allows better, more optimized production reducing thus CO2 footprint per barrel produced and for CO2 storage the knowledge of where stored fluids go is mandatory to monitor reservoir seals. Electromagnetic is the preferred way to image fluid due to its strong coupling to the fluid resistivity. Unfortunately, acquiring and interpreting the data takes too long to contribute significantly to field operation and cost optimization. Using artificial intelligence and Cloud based data acquisition we can reduce the operational feedback to near real time and for the interpretation to close to 24 h. This then opens new door for the usefulness of this technology from exploration, monitoring and allows the application envelope to be enlarged to much noisier environment where real time acquisition can be optimized based on the acquired data.


2004 ◽  
Vol 44 (1) ◽  
pp. 605
Author(s):  
A.K.M. Jamaluddin ◽  
C. Dong ◽  
P. Hermans ◽  
I.A. Khan ◽  
A. Carnegie ◽  
...  

Obtaining an adequate fluid characterisation early in the life of a reservoir is becoming a key requirement for successful hydrocarbon development. This work presents and discusses a number of new fluid sampling and fluid characterisation technologies that can be deployed either down hole or at surface in the early stages of the exploration and development cycle to achieve this objective. Techniques discussed include methods to monitor and quantify oil-based mud contamination, gas-liquid-ratio (GLR) and basic fluid composition in real time during open-hole formation testing operations. In addition, we demonstrate the applicability of new surface analysis techniques that allow for rapid, accurate, and reliable measurements of key fluid properties, such as saturation pressure, gas-oil ratio, extended carbon number composition, viscosity, and density, on-site within a few hours of retrieving reservoir fluid samples at surface. Finally, prediction tools used to extend these limited measurements to a traditional PVT fluid characterisation are presented along with example measurements from all the techniques described. In conclusion, it is shown that the implementation of these techniques in a complementary program can reduce the risk associated with making key development decisions that are based on an understanding of reservoir fluid properties.


Sign in / Sign up

Export Citation Format

Share Document