Deconvolution of Multiwell Test Data

SPE Journal ◽  
2007 ◽  
Vol 12 (04) ◽  
pp. 420-428 ◽  
Author(s):  
Michael M. Levitan

Summary The deconvolution analysis technique that evolved with development of the deconvolution algorithms by von Schroeter et al. (2004), Levitan (2005), and Levitan et al. (2006) became a useful addition to the suite of techniques used in well-test analysis. This deconvolution algorithm, however, is limited to the pressure and rate data that originate from a single active well on the structure. It is ideally suited for analysis of the data from exploration and appraisal well tests. The previously mentioned deconvolution algorithm can not be used with the data that are acquired during startup and early field development that normally involve several producing wells. The paper describes a generalization of deconvolution to multiwell pressure and rate data. Several approaches and ideas for multiwell deconvolution are investigated and evaluated. The paper presents the results of this investigation and demonstrates performance of the deconvolution algorithm on synthetic multiwell test data. Introduction Pressure-rate deconvolution is a way of reconstructing the characteristic pressure transient behavior of a reservoir-well system hidden in the test data by well-rate variation during a test. The deconvolution analysis technique that evolved with development of the deconvolution algorithms by von Schroeter et al. (2004), Levitan (2005), and Levitan et al. (2006) became a useful addition to the suite of techniques used in well-test analysis. It has been implemented in commercial well-test analysis software and is routinely used for analysis of well tests. This deconvolution algorithm, however, is applicable only for the case when there is just one active well in the reservoir. It is ideally suited for analysis of exploration and appraisal well tests. The previously described deconvolution algorithm cannot be used for well-test analysis when there are several active wells operating in the field and the bottomhole pressure measured in one well during a well test is affected by the production from other wells operating in the same reservoir. The deconvolution algorithm has to be generalized so that it is possible to remove not only the effects of rate variation of the well itself but also the pressure interferences with other wells in the reservoir. As a result, we would be able to reconstruct the true characteristic well-pressure responses to unit-rate production of each producing well in the reservoir. These responses reflect the reservoir and well properties and could be used for recovering these properties by the techniques of pressure-transient analysis. Multiwell deconvolution thus becomes in a way a general technique for interference well-test analysis. The problem, however, is that the interference pressure signals produced by other wells are small compared to the pressure signal caused by the production of the well itself. These pressure interference signals are delayed in time and the time delay depends on the distance between respective wells. All this makes multiwell deconvolution an extremely difficult problem.

2005 ◽  
Vol 8 (02) ◽  
pp. 113-121 ◽  
Author(s):  
Michael M. Levitan

Summary Pressure/rate deconvolution is a long-standing problem of well-test analysis that has been the subject of research by a number of authors. A variety of different deconvolution algorithms have been proposed in the literature. However, none of them is robust enough to be implemented in the commercial well-test-analysis software used most widely in the industry. Recently, vonSchroeter et al.1,2 published a deconvolution algorithm that has been shown to work even when a reasonable level of noise is present in the test pressure and rate data. In our independent evaluation of the algorithm, we have found that it works well on consistent sets of pressure and rate data. It fails, however, when used with inconsistent data. Some degree of inconsistency is normally present in real test data. In this paper, we describe the enhancements of the deconvolution algorithm that allow it to be used reliably with real test data. We demonstrate the application of pressure/rate deconvolution analysis to several real test examples. Introduction The well bottomhole-pressure behavior in response to a constant-rate flow test is a characteristic response function of the reservoir/well system. The constant-rate pressure-transient response depends on such reservoir and well properties as permeability, large-scale reservoir heterogeneities, and well damage (skin factor). It also depends on the reservoir flow geometry defined by the geometry of well completion and by reservoir boundaries. Hence, these reservoir and well characteristics are reflected in the system's constant-rate drawdown pressure-transient response, and some of these reservoir and well characteristics may potentially be recovered from the response function by conventional methods of well-test analysis. Direct measurement of constant-rate transient-pressure response does not normally yield good-quality data because of our inability to accurately control rates and because the well pressure is very sensitive to rate variations. For this reason, typical well tests are not single-rate, but variable-rate, tests. A well-test sequence normally includes several flow periods. During one or more of these flow periods, the well is shut in. Often, only the pressure data acquired during shut-in periods have the quality required for pressure-transient analysis. The pressure behavior during the individual flow period of a multirate test sequence depends on the flow history before this flow period. Hence, it is not the same as a constant-rate system-response function. The well-test-analysis theory that evolved over the past 50 years has been built around the idea of applying a special time transform to the test pressure data so that the pressure behavior during individual flow periods would be similar in some way to constant-rate drawdown-pressure behavior. The superposition-time transform commonly used for this purpose does not completely remove all effects of previous rate variation. There are sometimes residual superposition effects left, and this often complicates test analysis. An alternative approach is to convert the pressure data acquired during a variable-rate test to equivalent pressure data that would have been obtained if the well flowed at constant rate for the duration of the whole test. This is the pressure/rate deconvolution problem. Pressure/rate deconvolution has been a subject of research by a number of authors over the past 40 years. Pressure/rate deconvolution reduces to the solution of an integral equation. The kernel and the right side of the equation are given by the rate and the pressure data acquired during a test. This problem is ill conditioned, meaning that small changes in input (test pressure and rates) lead to large changes in output result—a deconvolved constant-rate pressure response. The ill-conditioned nature of the pressure/rate deconvolution problem, combined with errors always present in the test rate and pressure data, makes the problem highly unstable. A variety of different deconvolution algorithms have been proposed in the literature.3–8 However, none of them is robust enough to be implemented in the commercial well-test-analysis software used most widely in the industry. Recently, von Schroeter et al.1,2 published a deconvolution algorithm that has been shown to work when a reasonable level of noise is present in test pressure and rate data. In our independent implementation and evaluation of the algorithm, we have found that it works well on consistent sets of pressure and rate data. It fails, however, when used with inconsistent data. Examples of such inconsistencies include wellbore storage or skin factor changing during a well-test sequence. Some degree of inconsistency is almost always present in real test data. Therefore, the deconvolution algorithm in the form described in the references cited cannot work reliably with real test data. In this paper, we describe the enhancements of the deconvolution algorithm that allow it to be used reliably with real test data. We demonstrate application of the pressure/rate deconvolution analysis to several real test examples.


2021 ◽  
Author(s):  
Mohamad Mustaqim Mokhlis ◽  
Nurdini Alya Hazali ◽  
Muhammad Firdaus Hassan ◽  
Mohd Hafiz Hashim ◽  
Afzan Nizam Jamaludin ◽  
...  

Abstract In this paper we will present a process streamlined for well-test validation that involves data integration between different database systems, incorporated with well models, and how the process can leverage real-time data to present a full scope of well-test analysis to enhance the capability for assessing well-test performance. The workflow process demonstrates an intuitive and effective way for analyzing and validating a production well test via an interactive digital visualization. This approach has elevated the quality and integrity of the well-test data, as well as improved the process cycle efficiency that complements the field surveillance engineers to keep track of well-test compliance guidelines through efficient well-test tracking in the digital interface. The workflow process involves five primary steps, which all are conducted via a digital platform: Well Test Compliance: Planning and executing the well test Data management and integration Well Test Analysis and Validation: Verification of the well test through historical trending, stability period checks, and well model analysis Model validation: Correcting the well test and calibrating the well model before finalizing the validity of the well test Well Test Re-testing: Submitting the rejected well test for retesting and final step Integrating with corporate database system for production allocation This business process brings improvement to the quality of the well test, which subsequently lifts the petroleum engineers’ confidence level to analyze well performance and deliver accurate well-production forecasting. A well-test validation workflow in a digital ecosystem helps to streamline the flow of data and system integration, as well as the way engineers assess and validate well-test data, which results in minimizing errors and increases overall work efficiency.


1972 ◽  
Author(s):  
Anil Kumar ◽  
H. J. Ramey

Abstract Very little information exists for analyzing well tests wherein a part of the drainage boundary is under pressure support from water influx or fluid injection. An idealization is the behavior of a well in the center of a square whose outer boundary remains at constant pressure. A study of this system indicated important differences from the behavior of a well in a closed outer boundary square, the conventional system. At infinite shut in, the constant- pressure boundary case well will reach the initial pressure of the system, rather than a mean pressure resulting from depletion. But it is possible to compute the mean pressure in the constant-pressure case at any time during shut in. Interpretative graphs for analyzing drawdown and buildup pressures are presented and discussed. This case is also of interest in analysis of well tests obtained from developed five-spot fluid injection patterns. Introduction Well-test analysis has become a widely used tool for reservoir engineers in the last twenty years. The initial theory was reported by Horner1 for unsteady flow of single phase fluids of small but constant compressibility to a well producing at a constant rate in -infinite and closed boundary reservoirs. Extension of the theory to the finite reservoir case involves specification of the outer boundary condition. The two most commonly observed conditions are: (1) no flow at the outer boundary corresponding to a closed or depletion reservoir, and (2) constant pressure at the outer boundary corresponding to complete water-drive.


SPE Journal ◽  
2006 ◽  
Vol 11 (01) ◽  
pp. 35-47 ◽  
Author(s):  
Michael M. Levitan ◽  
Gary E. Crawford ◽  
Andrew Hardwick

Summary Pressure-rate deconvolution provides equivalent representation of variable-rate well-test data in the form of characteristic constant rate drawdown system response. Deconvolution allows one to develop additional insights into pressure transient behavior and extract more information from well-test data than is possible by using conventional analysis methods. In some cases, it is possible to interpret the same test data in terms of larger radius of investigation. There are a number of specific issues of which one has to be aware when using pressure-rate deconvolution. In this paper, we identify and discuss these issues and provide practical considerations and recommendations on how to produce correct deconvolution results. We also demonstrate reliable use of deconvolution on a number of real test examples. Introduction Evaluation and assessment of pressure transient behavior in well-test data normally begins with examination of test data on different analysis plots [e.g., a Bourdet (1983, 1989) derivative plot, a superposition (semilog) plot, or a Cartesian plot]. Each of these plots provides a different view of the pressure transient behavior hidden in the test data by well-rate variation during a test. Integration of these several views into one consistent picture allows one to recognize, understand, and explain the main features of the test transient pressure behavior. Recently, a new method of analyzing test data in the form of constant rate drawdown system response has emerged with development of robust pressure-rate deconvolution algorithm. (von Schroeter et al. 2001, 2004; Levitan 2005). Deconvolved drawdown system response is another way of presenting well-test data. Pressure--rate deconvolution removes the effects of rate variation from the pressure data measured during a well-test sequence and reveals underlying characteristic system behavior that is controlled by reservoir and well properties and is not masked by the specific rate history during the test. In contrast to a Bourdet derivative plot or to a superposition plot, which display the pressure behavior for a specific flow period of a test sequence, deconvolved drawdown response is a representation of transient pressure behavior for a group of flow periods included in deconvolution. As a result, deconvolved system response is defined on a longer time interval and reveals the features of transient behavior that otherwise would not be observed with conventional analysis approach. The deconvolution discussed in this paper is based on the algorithm first described by von Schroeter, Hollaender, and Gringarten (2001, 2004). An independent evaluation of the von Schroeter et al. algorithm by Levitan (2005) confirmed that with some enhancements and safeguards it can be used successfully for analysis of real well-test data. There are several enhancements that distinguish our form of the deconvolution algorithm. The original von Schroeter algorithm reconstructs only the logarithm of log-derivative of the pressure response to constant rate production. Initial reservoir pressure is supposed to be determined in the deconvolution process along with the deconvolved drawdown system response. However, inclusion of the initial pressure in the list of deconvolution parameters often causes the algorithm to fail. For this reason, the authors do not recommend determination of initial pressure in the deconvolution process (von Schroeter et al. 2004). It becomes an input parameter and has to be evaluated through other means. Our form of deconvolution algorithm reconstructs the pressure response to constant rate production along with its log-derivative. Depending on the test sequence, in some cases we can recover the initial reservoir pressure.


2000 ◽  
Vol 3 (04) ◽  
pp. 325-334 ◽  
Author(s):  
J.L. Landa ◽  
R.N. Horne ◽  
M.M. Kamal ◽  
C.D. Jenkins

Summary In this paper we present a method to integrate well test, production, shut-in pressure, log, core, and geological data to obtain a reservoir description for the Pagerungan field, offshore Indonesia. The method computes spatial distributions of permeability and porosity and generates a pressure response for comparison to field data. This technique produced a good match with well-test data from three wells and seven shut-in pressures. The permeability and porosity distributions also provide a reasonable explanation of the observed effects of a nearby aquifer on individual wells. As a final step, the method is compared to an alternate technique (object modeling) that models the reservoir as a two-dimensional channel. Introduction The Pagerungan field has been under commercial production since 1994. This field was chosen to test a method of integrating dynamic well data and reservoir description data because the reservoir has only produced single phase gas, one zone in the reservoir is responsible for most of the production, and good quality well-test, core, and log data are available for most wells. The method that was used to perform the inversion of the spatial distribution of permeability and porosity uses a parameter estimation technique that calculates the gradients of the calculated reservoir pressure response with respect to the permeability and porosity in each of the cells of a reservoir simulation grid. The method is a derivative of the gradient simulator1 approach and is described in Appendices A and B. The objective is to find sets of distributions of permeability and porosity such that the calculated response of the reservoir closely matches the pressure measurements. In addition, the distributions of permeability and porosity must satisfy certain constraints given by the geological model and by other information known about the reservoir. Statement of Theory and Definitions The process of obtaining a reservoir description involves using a great amount of data from different sources. It is generally agreed that a reservoir description will be more complete and reliable when it is the outcome of a process that can use the maximum possible number of data from different sources. This is usually referred to in the literature as "data Integration." Reservoir data can be classified as "static" or "dynamic" depending on their connection to the movement or flow of fluids in the reservoir. Data that have originated from geology, logs, core analysis, seismic and geostatistics can be generally classified as static; whereas the information originating from well testing and the production performance of the reservoir can be classified as dynamic. So far, most of the success in data integration has been obtained with static information. Remarkably, it has not yet become common to completely or systematically integrate dynamic data with static data. A number of researchers,2–5 are studying this problem at present. This work represents one step in that direction. Well Testing as a Tool for Reservoir Description. Traditional well-test analysis provides good insight into the average properties of the reservoir in the vicinity of a well. Well testing can also identify the major features of relatively simple reservoirs, such as faults, fractures, double porosity, channels, pinchouts, etc. in the near well area. The difficulties with this approach begin when it is necessary to use the well-test data on a larger scale, such as in the context of obtaining a reservoir description. One of the main reasons for these difficulties is that traditional well-test analysis handles transient pressure data collected at a single well at a time, and is restricted to a small time range. As a result, traditional well-test analysis does not make use of "pressure" events separated in historical time. The use of several single and multiple well tests to describe reservoir heterogeneity has been reported in the literature,6 however, this approach is not applied commonly because of the extensive efforts needed to obtain a reservoir description. The method presented in this paper uses a numerical model of the reservoir to overcome these shortcomings. It will be shown that pressure transients can be used effectively to infer reservoir properties at the scale of reservoir description. Well-test data, both complete tests and occasional spot pressure measurements, will be used to this effect. The well-test information allows us to infer properties close to the wells and, when combined with the shut-in pressures (spot pressure), boundary information and permeability-porosity correlations, provides the larger scale description. General Description of the Method The proposed method is similar to other parameter estimation methods and thus consists of the following major items: the mathematical model, the objective function and the minimization algorithm. Mathematical Model. Because of the complexity of the reservoir description, the reservoir response must be computed numerically. Therefore, the pressure response is found using a numerical simulator. The reservoir is discretized into blocks. The objective is to find a suitable permeability-porosity distribution so that values of these parameters can be assigned to each of the blocks.


1974 ◽  
Vol 14 (02) ◽  
pp. 107-116 ◽  
Author(s):  
Anil Kumar ◽  
Henry J. Ramey

Abstract Very little information exists for analyzing well tests wherein a part of the drainage boundary is under pressure support from water influx or fluid injection. An idealization is the behavior of a well in the center of a square whose outer boundary remains at constant pressure. A study of this system indicated important differences from the behavior of a well in a square with a closed outer boundary, the conventional system. At infinite shut-in, the well with a constant-pressure boundary will reach the initial pressure of the system, rather than a mean pressure resulting from depletion. It is possible to compute the mean pressure in the constant-pressure case at any time during shut-in. Interpretative graphs for analyzing drawdown and buildup pressures are presented and discussed. This case is also of interest in analyzing well tests obtained from developed five-spot fluid-injection patterns. Introduction Moore at. first demonstrated the application of transient flow theory to individual well behavior in 1931. Classic studies by Muskat, Elkins, and Arps in the 1930's and 1940's set the stage for two important papers in 1950 that clearly elucidated the basics of modern well-test analysis. One paper by Horner 5 summarized methods for analyzing transient pressure data from wells in infinite reservoirs (new wells in large reservoirs), and a well in a closed, circular reservoir under depletion (fully developed fields). The second paper by Miller, Dyes, and Hutchinsons considered two cases for wells assumed to have produced a long time before shut-in for pressure buildup. One case assumed a closed circular drainage boundary, and the other case assumed a circular drainage boundary at constant pressure. The former would represent annual well tests for fully developed fields, and the latter would represent wells under full water drive in single-well reservoirs. Since 1950, several hundred papers and a monograph have developed the behavior of a constant-rate well in a closed drainage shape of almost any geometry. Key in this development was a classic study by Matthews, Brons, and Hazebroek. The constant-pressure outer-boundary drainage region problem introduced by Miller-Dyes-Hutchinson was reviewed by Perrine in 1955, discussed by Hazekoek el al. in 1958 in connection with five-spot injection patterns, and mentioned briefly by Dietz in 1965. The only other studies dealing with water-drive conditions (constant-pressure outer boundaries) appear in Ref. 7 (Page 44) and in papers by Earlougher et al., published in 1968. It is clear that this case was eitherconsidered totally unimportant, orstudiously avoided. Almost all effort was expended on studying closed outer boundary (depletion) systems.Another problem concerned the conventional assumptions involved in developing well-test analysis method. Even for the common closed (depletion) systems, field applications raised the question of the importance of assumptions. Homer method of graphing assumed the well had been produced a short time, whereas the Miller-Dyes-Hutchinson method assumed that production was long enough to reach pseudosteady state -a long time in many cases. Engineers involved in applications were further confused by differences in methods, as well as by the importance of the assumptions required for analytical solutions that established welltest methods. Recently, Ramey and Cobb showed that an empirical approach could be used to avoid assumptions (which were sufficient but unnecessary) inherent in many previous analytical studies. It was decided to apply this method to the limiting case of a well in a full-water-drive, single-well reservoir - a well in a constant-pressure square. This case is a rarity not often seen in practice. It is closely approached by either an injector or a producer in a developed fluid-injection pattern, by a single injector in an aquifer gas-injection storage test, or by some single-well reservoirs in extensive aquifers.The main point is that a well in a constant-pressure square sets a limiting condition similar to a full water drive. The more common case of a well in a partial-water-drive reservoir should lie between this behavior and that of a closed square. SPEJ P. 107^


Sign in / Sign up

Export Citation Format

Share Document