Connecting Data, Model and Process to Streamline and Enhance Single-Point Production Well Test Validation

2021 ◽  
Author(s):  
Mohamad Mustaqim Mokhlis ◽  
Nurdini Alya Hazali ◽  
Muhammad Firdaus Hassan ◽  
Mohd Hafiz Hashim ◽  
Afzan Nizam Jamaludin ◽  
...  

Abstract In this paper we will present a process streamlined for well-test validation that involves data integration between different database systems, incorporated with well models, and how the process can leverage real-time data to present a full scope of well-test analysis to enhance the capability for assessing well-test performance. The workflow process demonstrates an intuitive and effective way for analyzing and validating a production well test via an interactive digital visualization. This approach has elevated the quality and integrity of the well-test data, as well as improved the process cycle efficiency that complements the field surveillance engineers to keep track of well-test compliance guidelines through efficient well-test tracking in the digital interface. The workflow process involves five primary steps, which all are conducted via a digital platform: Well Test Compliance: Planning and executing the well test Data management and integration Well Test Analysis and Validation: Verification of the well test through historical trending, stability period checks, and well model analysis Model validation: Correcting the well test and calibrating the well model before finalizing the validity of the well test Well Test Re-testing: Submitting the rejected well test for retesting and final step Integrating with corporate database system for production allocation This business process brings improvement to the quality of the well test, which subsequently lifts the petroleum engineers’ confidence level to analyze well performance and deliver accurate well-production forecasting. A well-test validation workflow in a digital ecosystem helps to streamline the flow of data and system integration, as well as the way engineers assess and validate well-test data, which results in minimizing errors and increases overall work efficiency.

2005 ◽  
Vol 8 (02) ◽  
pp. 113-121 ◽  
Author(s):  
Michael M. Levitan

Summary Pressure/rate deconvolution is a long-standing problem of well-test analysis that has been the subject of research by a number of authors. A variety of different deconvolution algorithms have been proposed in the literature. However, none of them is robust enough to be implemented in the commercial well-test-analysis software used most widely in the industry. Recently, vonSchroeter et al.1,2 published a deconvolution algorithm that has been shown to work even when a reasonable level of noise is present in the test pressure and rate data. In our independent evaluation of the algorithm, we have found that it works well on consistent sets of pressure and rate data. It fails, however, when used with inconsistent data. Some degree of inconsistency is normally present in real test data. In this paper, we describe the enhancements of the deconvolution algorithm that allow it to be used reliably with real test data. We demonstrate the application of pressure/rate deconvolution analysis to several real test examples. Introduction The well bottomhole-pressure behavior in response to a constant-rate flow test is a characteristic response function of the reservoir/well system. The constant-rate pressure-transient response depends on such reservoir and well properties as permeability, large-scale reservoir heterogeneities, and well damage (skin factor). It also depends on the reservoir flow geometry defined by the geometry of well completion and by reservoir boundaries. Hence, these reservoir and well characteristics are reflected in the system's constant-rate drawdown pressure-transient response, and some of these reservoir and well characteristics may potentially be recovered from the response function by conventional methods of well-test analysis. Direct measurement of constant-rate transient-pressure response does not normally yield good-quality data because of our inability to accurately control rates and because the well pressure is very sensitive to rate variations. For this reason, typical well tests are not single-rate, but variable-rate, tests. A well-test sequence normally includes several flow periods. During one or more of these flow periods, the well is shut in. Often, only the pressure data acquired during shut-in periods have the quality required for pressure-transient analysis. The pressure behavior during the individual flow period of a multirate test sequence depends on the flow history before this flow period. Hence, it is not the same as a constant-rate system-response function. The well-test-analysis theory that evolved over the past 50 years has been built around the idea of applying a special time transform to the test pressure data so that the pressure behavior during individual flow periods would be similar in some way to constant-rate drawdown-pressure behavior. The superposition-time transform commonly used for this purpose does not completely remove all effects of previous rate variation. There are sometimes residual superposition effects left, and this often complicates test analysis. An alternative approach is to convert the pressure data acquired during a variable-rate test to equivalent pressure data that would have been obtained if the well flowed at constant rate for the duration of the whole test. This is the pressure/rate deconvolution problem. Pressure/rate deconvolution has been a subject of research by a number of authors over the past 40 years. Pressure/rate deconvolution reduces to the solution of an integral equation. The kernel and the right side of the equation are given by the rate and the pressure data acquired during a test. This problem is ill conditioned, meaning that small changes in input (test pressure and rates) lead to large changes in output result—a deconvolved constant-rate pressure response. The ill-conditioned nature of the pressure/rate deconvolution problem, combined with errors always present in the test rate and pressure data, makes the problem highly unstable. A variety of different deconvolution algorithms have been proposed in the literature.3–8 However, none of them is robust enough to be implemented in the commercial well-test-analysis software used most widely in the industry. Recently, von Schroeter et al.1,2 published a deconvolution algorithm that has been shown to work when a reasonable level of noise is present in test pressure and rate data. In our independent implementation and evaluation of the algorithm, we have found that it works well on consistent sets of pressure and rate data. It fails, however, when used with inconsistent data. Examples of such inconsistencies include wellbore storage or skin factor changing during a well-test sequence. Some degree of inconsistency is almost always present in real test data. Therefore, the deconvolution algorithm in the form described in the references cited cannot work reliably with real test data. In this paper, we describe the enhancements of the deconvolution algorithm that allow it to be used reliably with real test data. We demonstrate application of the pressure/rate deconvolution analysis to several real test examples.


2000 ◽  
Vol 3 (04) ◽  
pp. 325-334 ◽  
Author(s):  
J.L. Landa ◽  
R.N. Horne ◽  
M.M. Kamal ◽  
C.D. Jenkins

Summary In this paper we present a method to integrate well test, production, shut-in pressure, log, core, and geological data to obtain a reservoir description for the Pagerungan field, offshore Indonesia. The method computes spatial distributions of permeability and porosity and generates a pressure response for comparison to field data. This technique produced a good match with well-test data from three wells and seven shut-in pressures. The permeability and porosity distributions also provide a reasonable explanation of the observed effects of a nearby aquifer on individual wells. As a final step, the method is compared to an alternate technique (object modeling) that models the reservoir as a two-dimensional channel. Introduction The Pagerungan field has been under commercial production since 1994. This field was chosen to test a method of integrating dynamic well data and reservoir description data because the reservoir has only produced single phase gas, one zone in the reservoir is responsible for most of the production, and good quality well-test, core, and log data are available for most wells. The method that was used to perform the inversion of the spatial distribution of permeability and porosity uses a parameter estimation technique that calculates the gradients of the calculated reservoir pressure response with respect to the permeability and porosity in each of the cells of a reservoir simulation grid. The method is a derivative of the gradient simulator1 approach and is described in Appendices A and B. The objective is to find sets of distributions of permeability and porosity such that the calculated response of the reservoir closely matches the pressure measurements. In addition, the distributions of permeability and porosity must satisfy certain constraints given by the geological model and by other information known about the reservoir. Statement of Theory and Definitions The process of obtaining a reservoir description involves using a great amount of data from different sources. It is generally agreed that a reservoir description will be more complete and reliable when it is the outcome of a process that can use the maximum possible number of data from different sources. This is usually referred to in the literature as "data Integration." Reservoir data can be classified as "static" or "dynamic" depending on their connection to the movement or flow of fluids in the reservoir. Data that have originated from geology, logs, core analysis, seismic and geostatistics can be generally classified as static; whereas the information originating from well testing and the production performance of the reservoir can be classified as dynamic. So far, most of the success in data integration has been obtained with static information. Remarkably, it has not yet become common to completely or systematically integrate dynamic data with static data. A number of researchers,2–5 are studying this problem at present. This work represents one step in that direction. Well Testing as a Tool for Reservoir Description. Traditional well-test analysis provides good insight into the average properties of the reservoir in the vicinity of a well. Well testing can also identify the major features of relatively simple reservoirs, such as faults, fractures, double porosity, channels, pinchouts, etc. in the near well area. The difficulties with this approach begin when it is necessary to use the well-test data on a larger scale, such as in the context of obtaining a reservoir description. One of the main reasons for these difficulties is that traditional well-test analysis handles transient pressure data collected at a single well at a time, and is restricted to a small time range. As a result, traditional well-test analysis does not make use of "pressure" events separated in historical time. The use of several single and multiple well tests to describe reservoir heterogeneity has been reported in the literature,6 however, this approach is not applied commonly because of the extensive efforts needed to obtain a reservoir description. The method presented in this paper uses a numerical model of the reservoir to overcome these shortcomings. It will be shown that pressure transients can be used effectively to infer reservoir properties at the scale of reservoir description. Well-test data, both complete tests and occasional spot pressure measurements, will be used to this effect. The well-test information allows us to infer properties close to the wells and, when combined with the shut-in pressures (spot pressure), boundary information and permeability-porosity correlations, provides the larger scale description. General Description of the Method The proposed method is similar to other parameter estimation methods and thus consists of the following major items: the mathematical model, the objective function and the minimization algorithm. Mathematical Model. Because of the complexity of the reservoir description, the reservoir response must be computed numerically. Therefore, the pressure response is found using a numerical simulator. The reservoir is discretized into blocks. The objective is to find a suitable permeability-porosity distribution so that values of these parameters can be assigned to each of the blocks.


SPE Journal ◽  
2007 ◽  
Vol 12 (04) ◽  
pp. 420-428 ◽  
Author(s):  
Michael M. Levitan

Summary The deconvolution analysis technique that evolved with development of the deconvolution algorithms by von Schroeter et al. (2004), Levitan (2005), and Levitan et al. (2006) became a useful addition to the suite of techniques used in well-test analysis. This deconvolution algorithm, however, is limited to the pressure and rate data that originate from a single active well on the structure. It is ideally suited for analysis of the data from exploration and appraisal well tests. The previously mentioned deconvolution algorithm can not be used with the data that are acquired during startup and early field development that normally involve several producing wells. The paper describes a generalization of deconvolution to multiwell pressure and rate data. Several approaches and ideas for multiwell deconvolution are investigated and evaluated. The paper presents the results of this investigation and demonstrates performance of the deconvolution algorithm on synthetic multiwell test data. Introduction Pressure-rate deconvolution is a way of reconstructing the characteristic pressure transient behavior of a reservoir-well system hidden in the test data by well-rate variation during a test. The deconvolution analysis technique that evolved with development of the deconvolution algorithms by von Schroeter et al. (2004), Levitan (2005), and Levitan et al. (2006) became a useful addition to the suite of techniques used in well-test analysis. It has been implemented in commercial well-test analysis software and is routinely used for analysis of well tests. This deconvolution algorithm, however, is applicable only for the case when there is just one active well in the reservoir. It is ideally suited for analysis of exploration and appraisal well tests. The previously described deconvolution algorithm cannot be used for well-test analysis when there are several active wells operating in the field and the bottomhole pressure measured in one well during a well test is affected by the production from other wells operating in the same reservoir. The deconvolution algorithm has to be generalized so that it is possible to remove not only the effects of rate variation of the well itself but also the pressure interferences with other wells in the reservoir. As a result, we would be able to reconstruct the true characteristic well-pressure responses to unit-rate production of each producing well in the reservoir. These responses reflect the reservoir and well properties and could be used for recovering these properties by the techniques of pressure-transient analysis. Multiwell deconvolution thus becomes in a way a general technique for interference well-test analysis. The problem, however, is that the interference pressure signals produced by other wells are small compared to the pressure signal caused by the production of the well itself. These pressure interference signals are delayed in time and the time delay depends on the distance between respective wells. All this makes multiwell deconvolution an extremely difficult problem.


Sign in / Sign up

Export Citation Format

Share Document