Reservoir Description by Well Test Analysis Using Cyclic Flow Rate Variation

1997 ◽  
Vol 12 (04) ◽  
pp. 247-254 ◽  
Author(s):  
A.J. Rosa ◽  
R.N. Horne
2000 ◽  
Vol 3 (04) ◽  
pp. 325-334 ◽  
Author(s):  
J.L. Landa ◽  
R.N. Horne ◽  
M.M. Kamal ◽  
C.D. Jenkins

Summary In this paper we present a method to integrate well test, production, shut-in pressure, log, core, and geological data to obtain a reservoir description for the Pagerungan field, offshore Indonesia. The method computes spatial distributions of permeability and porosity and generates a pressure response for comparison to field data. This technique produced a good match with well-test data from three wells and seven shut-in pressures. The permeability and porosity distributions also provide a reasonable explanation of the observed effects of a nearby aquifer on individual wells. As a final step, the method is compared to an alternate technique (object modeling) that models the reservoir as a two-dimensional channel. Introduction The Pagerungan field has been under commercial production since 1994. This field was chosen to test a method of integrating dynamic well data and reservoir description data because the reservoir has only produced single phase gas, one zone in the reservoir is responsible for most of the production, and good quality well-test, core, and log data are available for most wells. The method that was used to perform the inversion of the spatial distribution of permeability and porosity uses a parameter estimation technique that calculates the gradients of the calculated reservoir pressure response with respect to the permeability and porosity in each of the cells of a reservoir simulation grid. The method is a derivative of the gradient simulator1 approach and is described in Appendices A and B. The objective is to find sets of distributions of permeability and porosity such that the calculated response of the reservoir closely matches the pressure measurements. In addition, the distributions of permeability and porosity must satisfy certain constraints given by the geological model and by other information known about the reservoir. Statement of Theory and Definitions The process of obtaining a reservoir description involves using a great amount of data from different sources. It is generally agreed that a reservoir description will be more complete and reliable when it is the outcome of a process that can use the maximum possible number of data from different sources. This is usually referred to in the literature as "data Integration." Reservoir data can be classified as "static" or "dynamic" depending on their connection to the movement or flow of fluids in the reservoir. Data that have originated from geology, logs, core analysis, seismic and geostatistics can be generally classified as static; whereas the information originating from well testing and the production performance of the reservoir can be classified as dynamic. So far, most of the success in data integration has been obtained with static information. Remarkably, it has not yet become common to completely or systematically integrate dynamic data with static data. A number of researchers,2–5 are studying this problem at present. This work represents one step in that direction. Well Testing as a Tool for Reservoir Description. Traditional well-test analysis provides good insight into the average properties of the reservoir in the vicinity of a well. Well testing can also identify the major features of relatively simple reservoirs, such as faults, fractures, double porosity, channels, pinchouts, etc. in the near well area. The difficulties with this approach begin when it is necessary to use the well-test data on a larger scale, such as in the context of obtaining a reservoir description. One of the main reasons for these difficulties is that traditional well-test analysis handles transient pressure data collected at a single well at a time, and is restricted to a small time range. As a result, traditional well-test analysis does not make use of "pressure" events separated in historical time. The use of several single and multiple well tests to describe reservoir heterogeneity has been reported in the literature,6 however, this approach is not applied commonly because of the extensive efforts needed to obtain a reservoir description. The method presented in this paper uses a numerical model of the reservoir to overcome these shortcomings. It will be shown that pressure transients can be used effectively to infer reservoir properties at the scale of reservoir description. Well-test data, both complete tests and occasional spot pressure measurements, will be used to this effect. The well-test information allows us to infer properties close to the wells and, when combined with the shut-in pressures (spot pressure), boundary information and permeability-porosity correlations, provides the larger scale description. General Description of the Method The proposed method is similar to other parameter estimation methods and thus consists of the following major items: the mathematical model, the objective function and the minimization algorithm. Mathematical Model. Because of the complexity of the reservoir description, the reservoir response must be computed numerically. Therefore, the pressure response is found using a numerical simulator. The reservoir is discretized into blocks. The objective is to find a suitable permeability-porosity distribution so that values of these parameters can be assigned to each of the blocks.


1981 ◽  
Vol 21 (01) ◽  
pp. 98-104 ◽  
Author(s):  
C.A. Ehlig-Economides ◽  
H.J. Ramey

Abstract Although constant-rate production is assumed in the development of conventional well test analysis methods, constant-pressure production conditions are not uncommon. Conditions under which constant-pressure flow is maintained at a well include production into a constant-pressure separator or pipeline, steam production into a backpressured turbine, or open flow to the atmosphere.To perform conventional well test analysis on such wells, one common procedure is to flow the well at a constant rate for several days before performing the test. This procedure is not always effective, and often the delay could be avoided by performing transient rate tests instead. Practical methods for transient rate analysis of wells produced at constant pressure are presented in this paper. The most important test is the analysis of the rate response to a step change in producing pressure. This test allows type-curve analysis of the transient rate response without the complication of wellbore storage effects. Reservoir permeability, porosity, and the wellbore skin factor can be determined from the type-curve match. The reservoir limit test is also important. Exponential rate decline can be analyzed to determine the drainage area of a well and the shape factor.The effect of the pressure drop in the wellbore due to flowing friction is investigated. Constant wellhead-pressure flow causes a variable pressure at the sandface because the pressure drop from flowing friction is dependent on the transient rate. Finally, for testing of new wells, the effect of a limited initial flow rate due to critical flow phenomena is examined. Introduction Fundamental considerations suggest that conventional pressure drawdown and buildup analysis methods developed for constant-rate production should not be appropriate for a well produced at a constant pressure. However, a well produced at a constant pressure exhibits a transient rate decline which can be analyzed using techniques analogous to the methods for constant-rate flow. In this paper, analytical solutions for the transient rate decline for wells produced at constant pressure are used to determine practical well test analysis methods.Many of the basic analytical solutions for transient rate decline have been available for some time. The first solutions were published by Moore et al. and Hurst. Results were presented in graphical form for bounded and unbounded reservoirs in which the flow was radial and the single-phase fluid was slightly compressible. Tables of dimensionless flow rate vs. dimensionless time were provided later by Ferris et al. for the unbounded system and by Tsarevich and Kuranov for the closed-boundary circular reservoir. Tsarevich and Kuranov also provided tabulated solutions for the cumulative production from a closed-boundary reservoir. Van Everdingen and Hurst presented solutions and tables of the cumulative production for constant-pressure production. Fetkovich developed log-log type curves for transient rate vs. sine in the closed-boundary circular reservoir. Type curves for rate decline in closed-boundary reservoirs with pressure-sensitive rock and fluid properties were developed by Samaniego and Cinco. A method for determining the skin effect was given by Earlougher. Type curves for analysis of the transient rate response when the well penetrates a fracture were developed by Prats et al. and Locke and Sawyer. SPEJ P. 98^


2020 ◽  
Author(s):  
Patricio-Ignacio Pérez D. ◽  
Adrián-Enrique Ortiz R. ◽  
Ernesto Meneses Rioseco

Abstract. This work studies intensively the flow in fractures with finite hydraulic conductivity intersected by a well injecting/producing at constant pressure. Previous investigations showed that for a certain time the reciprocal of flow rate is proportional to the fourth root of time, which is characteristic of the flow regime known as bilinear flow. Using a 2D numerical model, we demonstrated that during the bilinear flow regime the transient propagation of isobars along the fracture is proportional to the fourth root of time. Moreover, we present relations to calculate the termination time of bilinear flow under constant injection or production well pressure, as well as, an expression for the bilinear hydraulic diffusivity of fractures with finite hydraulic conductivity. To determine the termination of bilinear flow regime, two different methods were used: (a) numerically measuring the transient of flow rate in the well and (b) analyzing the propagation of isobars along the fracture. Numerical results show that for low fracture conductivities the transition from bilinear flow to another flow regime occurs before the pressure front reaches the fracture tip and for high fracture conductivities it occurs when the pressure front arrives at the fracture tip. Hence, this work complements and advances previous research on the interpretation and evaluation of well test analysis under different reservoir conditions. Our results aim at improving the understanding of the hydraulic diffusion in fractured geologic media and as a result they can be utilized for the interpretation of hydraulic tests, for example to estimate the fracture length.


SPE Journal ◽  
2007 ◽  
Vol 12 (04) ◽  
pp. 420-428 ◽  
Author(s):  
Michael M. Levitan

Summary The deconvolution analysis technique that evolved with development of the deconvolution algorithms by von Schroeter et al. (2004), Levitan (2005), and Levitan et al. (2006) became a useful addition to the suite of techniques used in well-test analysis. This deconvolution algorithm, however, is limited to the pressure and rate data that originate from a single active well on the structure. It is ideally suited for analysis of the data from exploration and appraisal well tests. The previously mentioned deconvolution algorithm can not be used with the data that are acquired during startup and early field development that normally involve several producing wells. The paper describes a generalization of deconvolution to multiwell pressure and rate data. Several approaches and ideas for multiwell deconvolution are investigated and evaluated. The paper presents the results of this investigation and demonstrates performance of the deconvolution algorithm on synthetic multiwell test data. Introduction Pressure-rate deconvolution is a way of reconstructing the characteristic pressure transient behavior of a reservoir-well system hidden in the test data by well-rate variation during a test. The deconvolution analysis technique that evolved with development of the deconvolution algorithms by von Schroeter et al. (2004), Levitan (2005), and Levitan et al. (2006) became a useful addition to the suite of techniques used in well-test analysis. It has been implemented in commercial well-test analysis software and is routinely used for analysis of well tests. This deconvolution algorithm, however, is applicable only for the case when there is just one active well in the reservoir. It is ideally suited for analysis of exploration and appraisal well tests. The previously described deconvolution algorithm cannot be used for well-test analysis when there are several active wells operating in the field and the bottomhole pressure measured in one well during a well test is affected by the production from other wells operating in the same reservoir. The deconvolution algorithm has to be generalized so that it is possible to remove not only the effects of rate variation of the well itself but also the pressure interferences with other wells in the reservoir. As a result, we would be able to reconstruct the true characteristic well-pressure responses to unit-rate production of each producing well in the reservoir. These responses reflect the reservoir and well properties and could be used for recovering these properties by the techniques of pressure-transient analysis. Multiwell deconvolution thus becomes in a way a general technique for interference well-test analysis. The problem, however, is that the interference pressure signals produced by other wells are small compared to the pressure signal caused by the production of the well itself. These pressure interference signals are delayed in time and the time delay depends on the distance between respective wells. All this makes multiwell deconvolution an extremely difficult problem.


2021 ◽  
Author(s):  
Mohamad Mustaqim Mokhlis ◽  
Nurdini Alya Hazali ◽  
Muhammad Firdaus Hassan ◽  
Mohd Hafiz Hashim ◽  
Afzan Nizam Jamaludin ◽  
...  

Abstract In this paper we will present a process streamlined for well-test validation that involves data integration between different database systems, incorporated with well models, and how the process can leverage real-time data to present a full scope of well-test analysis to enhance the capability for assessing well-test performance. The workflow process demonstrates an intuitive and effective way for analyzing and validating a production well test via an interactive digital visualization. This approach has elevated the quality and integrity of the well-test data, as well as improved the process cycle efficiency that complements the field surveillance engineers to keep track of well-test compliance guidelines through efficient well-test tracking in the digital interface. The workflow process involves five primary steps, which all are conducted via a digital platform: Well Test Compliance: Planning and executing the well test Data management and integration Well Test Analysis and Validation: Verification of the well test through historical trending, stability period checks, and well model analysis Model validation: Correcting the well test and calibrating the well model before finalizing the validity of the well test Well Test Re-testing: Submitting the rejected well test for retesting and final step Integrating with corporate database system for production allocation This business process brings improvement to the quality of the well test, which subsequently lifts the petroleum engineers’ confidence level to analyze well performance and deliver accurate well-production forecasting. A well-test validation workflow in a digital ecosystem helps to streamline the flow of data and system integration, as well as the way engineers assess and validate well-test data, which results in minimizing errors and increases overall work efficiency.


Sign in / Sign up

Export Citation Format

Share Document