Efficient Field-Scale Simulation of Black Oil in a Naturally Fractured Reservoir Through Discrete Fracture Networks and Homogenized Media

2008 ◽  
Vol 11 (04) ◽  
pp. 750-758 ◽  
Author(s):  
Liyong Li ◽  
Seong H. Lee

Summary This paper describes a hybrid finite volume method, designed to simulate multiphase flow in a field-scale naturally fractured reservoir. Lee et al. (WRR 37:443-455, 2001) developed a hierarchical approach in which the permeability contribution from short fractures is derived in an analytical expression that from medium fractures is numerically solved using a boundary element method. The long fractures are modeled explicitly as major fluid conduits. Reservoirs with well-developed natural fractures include many complex fracture networks that cannot be easily modeled by simple long fracture formulation and/or homogenized single continuity model. We thus propose a numerically efficient hybrid method in which small and medium fractures are modeled by effective permeability, and large fractures are modeled by discrete fracture networks. A simple, systematic way is devised to calculate transport parameters between fracture networks and discretized, homogenized media. An efficient numerical algorithm is also devised to solve the dual system of fracture network and finite volume grid. Black oil formulation is implemented in the simulator to demonstrate practical applications of this hybrid finite volume method. Introduction Many reservoirs are highly fractured due to the complex tectonic movement and sedimentation process the formation has experienced. The permeability of a fracture is usually much larger than that of the rock matrix; as a result, the fluid will flow mostly through the fracture network, if the fractures are connected. This implies that the fracture connectivities and their distribution will determine fluid transport in a naturally fractured reservoir (Long and Witherspoon 1985). Because of statistically complex distribution of geological heterogeneity and multiple length and time scales in natural porous media, three approaches (Smith and Schwartz 1993) are commonly used in describing fluid flow and solute transport in naturally fractured formations:discrete fracture models;continuum models using effective properties for discrete grids; andhybrid models that combine discrete, large features and equivalent continuum. Currently, most reservoir simulators use dual continuum formulations (i.e., dual porosity/permeability) for naturally fractured reservoirs in which matrix blocks are divided by very regular fracture patterns (Kazemi et al. 1976, Van Golf-Racht 1982). Part of the primary input into these simulation models is the permeability of the fracture system assigned to the individual grid-blocks. This value can only be reasonably calculated if the fracture systems are regular and well connected. Field characterization studies have shown, however, that fracture systems are very irregular, often disconnected, and occur in swarms (Laubach 1991, Lorenz and Hill 1991, Narr et al. 2003). Most naturally fractured reservoirs include fractures of multiple- length scales. The effective grid-block permeability calculated by the boundary element method becomes expensive as the number of fractures increases. The calculated effective properties for grid-blocks also underestimates the properties for long fractures whose length scale is much larger than the grid-block size. Lee et al. (2001) proposed a hierarchical method to model fluid flow in a reservoir with multiple-length scaled fractures. They assumed that short fractures are randomly distributed and contribute to increasing the effective matrix permeability. An asymptotic solution representing the permeability contribution from short fractures was derived. With the short fracture contribution to permeability, the effective matrix permeability can be expressed in a general tensor form. Thus, they also developed a boundary element method for Darcy's equation with tensor permeability. For medium-length fractures in a grid-block, a coupled system of Poisson equations with tensor permeability was solved numerically using a boundary element method. The grid-block effective permeabilities were used with a finite difference simulator to compute flow through the fracture system. The simulator was enhanced to use a control-volume finite difference formulation (Lee et al. 1998, 2002) for general tensor permeability input (i.e., 9-point stencil for 2-D and 27-point stencil for 3-D). In addition, long fractures were explicitly modeled by using the transport index between fracture and matrix in a gridblock. In this paper we adopt their transport index concept and extend the hierarchical method:to include networks of long fractures;to model fracture as a two-dimensional plane; andto allow fractures to intersect with well bore. This generalization allows us to model a more realistic and complex fracture network that can be found in naturally fractured reservoirs. To demonstrate this new method for practical reservoir applications, we furthermore implement a black oil formulation in the simulator. We explicitly model long fractures as a two-dimensional plane that can penetrate several layers. The method, presented in this paper, allows a general description of fracture orientation in space. For simplicity of computational implementation however, both the medium-length and long fractures considered in this paper are assumed to be perpendicular to bedding boundaries. In addition, we derive a source/sink term to model the flux between matrix and long fracture networks. This source/sink allows for coupling multiphase flow equations in long fractures and matrix. The paper is organized as follows. In Section 2 black oil formulation is briefly summarized and the transport equations for three phase flow are presented. The fracture characterization and hierarchical modeling approach, based on fracture length, are discussed in Section 3. In Section 4 we review homogenization of short and medium fractures, which is part of our hierarchical approach to modeling flow in porous media with multiple length-scale fractures. In Section 5 we discuss a discrete network model of long fractures. We also derive transfer indices between fracture and effective matrix blocks. In Section 6 we present numerical examples for tracer transport in a model with simple fracture network, interactions of fractures and wells, and black oil production in a reservoir with a complex fracture network system. Finally, the summary of our main results and conclusion follows.

SPE Journal ◽  
2017 ◽  
Vol 22 (04) ◽  
pp. 1064-1081 ◽  
Author(s):  
Sanbai Li ◽  
Dongxiao Zhang ◽  
Xiang Li

Summary A fully coupled thermal/hydromechanical (THM) model for hydraulic-fracturing treatments is developed in this study. In this model, the mixed finite-volume/finite-element method is used to solve the coupled system, in which the multipoint flux approximation L-method is used to calculate interelement fluid and heat flux. The Gu et al. (2011) crossing criterion is extended to a 3D scenario to delineate the crossing behaviors as hydraulic fractures meet inclined natural fractures. Moreover, the modified Barton et al. (1985) model proposed by Asadollahi et al. (2010) is used to estimate the fracture aperture and model the shear-dilation effect. After being (partially) verified by means of comparison with results from the literature, the developed model is used to investigate complex-fracture-network propagation in naturally fractured reservoirs. Numerical experiments show that the key factors controlling the complexity of the induced-fracture networks include stress anisotropy, injection rate, natural-fracture distribution (fracture-dip angle, strike angle, spacing, density, and length), fracture-filling properties (the degree of cementation and permeability), fracture-surface properties (cohesion and friction angle), and tensile strength of intact rock. It is found that the smaller the stress anisotropy and/or the lower the injection rate, the more complex the fracture network; a high rock tensile strength could increase the possibility of the occurrence of shear fractures; and under conditions of large permeability of fracture filling combined with small cohesive strength and friction coefficient, shear slip could become the dominant mechanism for generating complex-fracture networks. The model developed and the results presented can be used to understand the propagation of complex-fracture networks and aid in the design and optimization of hydraulic-fracturing treatments.


1985 ◽  
Vol 25 (05) ◽  
pp. 743-756 ◽  
Author(s):  
Dimitrie Bossie-Codreanu ◽  
Paul R. Bia ◽  
Jean-Claude Sabathier

Abstract This paper describes an approach to simulating the flow of water, oil, and gas in fully or partially fractured reservoirs with conventional black-oil models. This approach is based on the dual porosity concept and uses a conventional tridimensional, triphasic, black-oil model with minor modifications. The basic feature is an elementary volume of the fractured reservoir that is simulated by several model cells; the matrix is concentrated into one matrix cell and tee fractures into the adjacent fracture cells. Fracture cells offer a continuous path for fluid flows, while matrix cello are discontinuous ("checker board" display). The matrix-fracture flows are calculated directly by the model. Limitations and applications of this approximate approach are discussed and examples given. Introduction Fractured reservoir models were developed to simulate fluid flows in a system of continuous fractures of high permeability and low porosity that surround discontinuous, porous, oil-saturated matrix blocks of much lower permeability but higher porosity. The use of conventional models that permeability but higher porosity. The use of conventional models that actually simulate the fractures and matrix blocks is restricted to small systems composed of a limited number of matrix blocks. The common approach to simulating a full-field fractured reservoir is to consider a general flow within the fracture network and a local flow (exchange of fluids) between matrix blocks and fractures. This local flow is accounted for by the introduction of source or sink terms (transfer functions). In this formulation, the model is not directly predictive because the source term (transfer function) is, in fact, entered data and is derived from outside the model by one of the following approaches:analytical computation,empirical determination (laboratory experiments), ornumerical simulation of one or several matrix blocks on a conventional model. To derive these transfer functions, imposing some boundary conditions is necessary. Unfortunately, it is generally impossible to foresee all the conditions that will arise in a, matrix block and its surrounding fractures during its field life. It would be helpful, therefore, to have a model that is able to compute directly the local flows according to changing conditions. However, to have low computing times, it is necessary to use an approximate formulation and, thus, to adjust some parameters to match results that are externally (and more accurately) derived in a few basis, well-defined conditions. By current investigative techniques, only a very general description of the matrix blocks and fissures can be obtained, so our knowledge of local flows is very approximate. This paper presents a modeling procedure that is an approximate but helpful approach to the simulation of fractured reservoirs and requires a few, simple modifications of conventional black-oil mathematical models. Review of the Literature Numerous papers related to single- and multiphase flow in fractured porous media have been published over the last three decades. On the basis of data from fractured limestone and sand-stone reservoirs, fractured reservoirs are pictured as stacks of matrix blocks separated by fractures (Figs. 1 and 2). The fractured reservoirs with oil-saturated matrices usually are referred to as "double porosity" systems. Primary porosity is associated with matrix blocks, while secondary porosity is associated with fractures. The porosity of the matrices is generally much greater than that of the fractures, but permeability within fractures may be 100 and even over 10,000 times higher permeability within fractures may be 100 and even over 10,000 times higher than within the matrices. The main difference between flow in a fractured medium and flow in a conventional porous system is that, in a fractured medium, the interconnected fracture network provides the main path for fluid flow through the reservoir, while local flows (exchanges of fluids) occur between the discontinuous matrix blocks and the surrounding fractures. Matrix oil flows into the fractures, and the fractures carry the oil to the wellbore. For single-phase flow, Barenblatt et al constructed a formula based on the dual porosity approach. They consider the reservoir as two overlying continua, the matrices and the fractures. SPEJ p. 743


2002 ◽  
Vol 5 (02) ◽  
pp. 154-162 ◽  
Author(s):  
S. Sarda ◽  
L. Jeannin ◽  
R. Basquet ◽  
B. Bourbiaux

Summary Advanced characterization methodology and software are now able to provide realistic pictures of fracture networks. However, these pictures must be validated against dynamic data like flowmeter, well-test, interference-test, or production data and calibrated in terms of hydraulic properties. This calibration and validation step is based on the simulation of those dynamic tests. What has to be overcome is the challenge of both accurately representing large and complex fracture networks and simulating matrix/ fracture exchanges with a minimum number of gridblocks. This paper presents an efficient, patented solution to tackle this problem. First, a method derived from the well-known dual-porosity concept is presented. The approach consists of developing an optimized, explicit representation of the fractured medium and specific treatments of matrix/fracture exchanges and matrix/matrix flows. In this approach, matrix blocks of different volumes and shapes are associated with each fracture cell depending on the local geometry of the surrounding fractures. The matrix-block geometry is determined with a rapid image-processing algorithm. The great advantage of this approach is that it can simulate local matrix/fracture exchanges on large fractured media in a much faster and more appropriate way. Indeed, the simulation can be carried out with a much smaller number of cells compared to a fully explicit discretization of both matrix and fracture media. The proposed approach presents other advantages owing to its great flexibility. Indeed, it accurately handles the cases in which flows are not controlled by fractures alone; either the fracture network may be not hydraulically connected from one well to another, or the matrix may have a high permeability in some places. Finally, well-test cases demonstrate the reliability of the method and its range of application. Introduction In recent years, numerous research programs have been focusing on the topic of fractured reservoirs. Major advances were made, and oil companies now benefit from efficient methodologies, tools, and software for fractured reservoir studies. Nowadays, a study of a fractured reservoir, from fracture detection to full-field simulation, includes the following main steps: geological fracture characterization, hydraulic characterization of fractures, upscaling of fracture properties, and fractured reservoir simulation. Research on fractured reservoir simulation has a long history. In the early 1960s, Barenblatt and Zheltov1 first introduced the dual-porosity concept, followed by Warren and Root,2 who proposed a simplified representation of fracture networks to be used in dual-porosity simulators. Based on this concept, reservoir simulators3 are now able to correctly reproduce the main driving mechanisms occurring in fractured reservoirs, such as water imbibition, gas/oil and water/oil gravity drainage, molecular diffusion, and convection in fractures. Even single-medium simulators can perform fractured reservoir simulation when adequate pseudocapillary pressure curves and pseudorelative permeability curves can be input. Indeed, except for particular cases such as thermal recovery processes, full-field simulation of fractured reservoirs is no longer a problem. Geological characterization of fractures progressed considerably in the 1990s. The challenge was to analyze and integrate all the available fracture data to provide a reliable description of the fracture network both at field scale and at local reservoir cell scale. Tools have been developed for merging seismic, borehole imaging, lithological, and outcrop data together with the help of geological and geomechanical rules.3 These tools benefited from the progress of seismic acquisition and borehole imaging. Indeed, accurate seismic data lead to reliable models of large-scale fracture networks, and borehole imaging gives the actual fracture description along the wells, which enables a reliable statistical determination of fracture attributes. Finally, these tools provide realistic pictures of fracture networks. They are applied successfully in numerous fractured-reservoir studies. The upscaling of fracture properties is the problem of translating the geological description of fracture networks into reservoir simulation parameters. Two approaches are possible. In the first one, the fractured reservoir is considered as a very heterogeneous matrix reservoir; therefore, one applies the classical techniques available for heterogeneous single-medium upscaling. The second approach is based on the dual-porosity concept and consists of upscaling the matrix and the fracture separately. Based on this second approach, methodologies and software were developed in the 1990s to calculate equivalent fracture parameters with respect to the dual-porosity concept (i.e., a fracture-permeability tensor with main flow directions and anisotropy and a shape factor that controls the matrix/fracture exchange kinetics3–5). For a given reservoir grid cell, the upscaling procedures consist of generating the corresponding 3D discrete fracture network and computing the equivalent parameters from this network. In particular, the permeability tensor is computed from the results of steady-state flow simulations in the discrete fracture network alone (without the matrix).


Author(s):  
Luís Augusto Nagasaki Costa ◽  
Célio Maschio ◽  
Denis José Schiozer

Accurately characterizing fractures is complex. Several studies have proposed reducing uncertainty by incorporating fracture characterization into simulations, using a probabilistic approach, to maintain the geological consistency, of a range of models instead of a single matched model. We propose a new methodology, based on one of the steps of a general history-matching workflow, to reduce uncertainty of reservoir attributes in naturally fractured reservoirs. This methodology maintains geological consistency and can treat many reservoir attributes. To guarantee geological consistency, the geostatistical attributes (e.g., fracture aperture, length, and orientation) are used as parameters in the history matching. This allows us to control Discrete Fracture Network attributes, and systematically modify fractures. The iterative sensitivity analysis allows the inclusion of many (30 or more) uncertain attributes that might occur in a practical case. At each uncertainty reduction step, we use a sensitivity analysis to identify the most influential attributes to treat in each step. Working from the general history-matching workflow of Avansi et al. (2016), we adapted steps for use with our methodology, integrating the history matching with geostatistical modeling of fractures and other properties in a big loop approach. We applied our methodology to a synthetic case study of a naturally fractured reservoir, based on a real semi-synthetic carbonate field, offshore Brazil, to demonstrate the applicability in practical and complex cases. From the initial 18 uncertain attributes, we worked with only 5 and reduced the overall variability of the Objective Functions. Although the focus is on naturally fractured reservoirs, the proposed methodology can be applied to any type of reservoir.


Sign in / Sign up

Export Citation Format

Share Document