Convective Heat Transfer for Laminar, Steady-State Flow of Bingham and Power Law Fluids Between Vertical, Parallel Plates

Author(s):  
E.P. Cernocky ◽  
Yildiz Bayazitoglu ◽  
Paul Paslay
2004 ◽  
Vol 59 (3) ◽  
pp. 645-659 ◽  
Author(s):  
Rupali Shukla ◽  
S.D. Dhole ◽  
R.P. Chhabra ◽  
V. Eswaran

Fluids ◽  
2021 ◽  
Vol 6 (8) ◽  
pp. 266
Author(s):  
Péter German ◽  
Mauricio E. Tano ◽  
Carlo Fiorina ◽  
Jean C. Ragusa

This work presents a data-driven Reduced-Order Model (ROM) for parametric convective heat transfer problems in porous media. The intrusive Proper Orthogonal Decomposition aided Reduced-Basis (POD-RB) technique is employed to reduce the porous medium formulation of the incompressible Reynolds-Averaged Navier–Stokes (RANS) equations coupled with heat transfer. Instead of resolving the exact flow configuration with high fidelity, the porous medium formulation solves a homogenized flow in which the fluid-structure interactions are captured via volumetric flow resistances with nonlinear, semi-empirical friction correlations. A supremizer approach is implemented for the stabilization of the reduced fluid dynamics equations. The reduced nonlinear flow resistances are treated using the Discrete Empirical Interpolation Method (DEIM), while the turbulent eddy viscosity and diffusivity are approximated by adopting a Radial Basis Function (RBF) interpolation-based approach. The proposed method is tested using a 2D numerical model of the Molten Salt Fast Reactor (MSFR), which involves the simulation of both clean and porous medium regions in the same domain. For the steady-state example, five model parameters are considered to be uncertain: the magnitude of the pumping force, the external coolant temperature, the heat transfer coefficient, the thermal expansion coefficient, and the Prandtl number. For transient scenarios, on the other hand, the coastdown-time of the pump is the only uncertain parameter. The results indicate that the POD-RB-ROMs are suitable for the reduction of similar problems. The relative L2 errors are below 3.34% for every field of interest for all cases analyzed, while the speedup factors vary between 54 (transient) and 40,000 (steady-state).


1994 ◽  
Vol 76 (5) ◽  
pp. 2084-2094 ◽  
Author(s):  
M. B. Ducharme ◽  
P. Tikuisis

The objective of the present study was to investigate the relative contribution of the convective heat transfer in the forearm and hand to 1) the total heat loss during partial immersion in cold water [water temperature (Tw) = 20 degrees C] and 2) the heat gained during partial immersion in warm water (Tw = 38 degrees C). The heat fluxes from the skin of the forearm and finger were continuously monitored during the 3.5-h immersion of the upper limb (forearm and hand) with 23 recalibrated heat flux transducers. The last 30 min of the partial immersion were conducted with an arterial occlusion of the forearm. The heat flux values decreased during the occlusion period at Tw = 20 degrees C and increased at Tw = 38 degrees C for all sites, plateauing only for the finger to the value of the tissue metabolic rate (124.8 +/- 29.0 W/m3 at Tw = 20 degrees C and 287.7 +/- 41.8 W/m3 at Tw = 38 degrees C). The present study shows that, at thermal steady state during partial immersion in water at 20 degrees C, the convective heat transfer between the blood and the forearm tissue is the major heat source of the tissue and accounts for 85% of the total heat loss to the environment. For the finger, however, the heat produced by the tissue metabolism and that liberated by the convective heat transfer are equivalent. At thermal steady state during partial immersion in water at 38 degrees C, the blood has the role of a heat sink, carrying away from the limb the heat gained from the environment and, to a lesser extent (25%), the metabolic and conductive heats. These results suggest that during local cold stress the convective heat transfer by the blood has a greater role than that suggested by previous studies for the forearm but a lesser role for the hand.


Sign in / Sign up

Export Citation Format

Share Document