Practical Application of Surface-Wave Methods to Estimate a Near-Surface Velocity Model at Spring Coulee

2010 ◽  
Author(s):  
Khaled Al Dulaijan ◽  
Robert R. Stewart
Geophysics ◽  
2019 ◽  
Vol 84 (1) ◽  
pp. B95-B105 ◽  
Author(s):  
Yao Wang ◽  
Richard D. Miller ◽  
Shelby L. Peterie ◽  
Steven D. Sloan ◽  
Mark L. Moran ◽  
...  

We have applied time domain 2D full-waveform inversion (FWI) to detect a known 10 m deep wood-framed tunnel at Yuma Proving Ground, Arizona. The acquired seismic data consist of a series of 2D survey lines that are perpendicular to the long axis of the tunnel. With the use of an initial model estimated from surface wave methods, a void-detection-oriented FWI workflow was applied. A straightforward [Formula: see text] quotient masking method was used to reduce the inversion artifacts and improve confidence in identifying anomalies that possess a high [Formula: see text] ratio. Using near-surface FWI, [Formula: see text] and [Formula: see text] velocity profiles were obtained with void anomalies that are easily interpreted. The inverted velocity profiles depict the tunnel as a low-velocity anomaly at the correct location and depth. A comparison of the observed and simulated waveforms demonstrates the reliability of inverted models. Because the known tunnel has a uniform shape and for our purposes an infinite length, we apply 1D interpolation to the inverted [Formula: see text] profiles to generate a pseudo 3D (2.5D) volume. Based on this research, we conclude the following: (1) FWI is effective in near-surface tunnel detection when high resolution is necessary. (2) Surface-wave methods can provide accurate initial S-wave velocity [Formula: see text] models for near-surface 2D FWI.


2018 ◽  
Vol 58 (2) ◽  
pp. 884
Author(s):  
Lianping Zhang ◽  
Haryo Trihutomo ◽  
Yuelian Gong ◽  
Bee Jik Lim ◽  
Alexander Karvelas

The Schlumberger Multiclient Exmouth 3D survey was acquired over the Exmouth sub-basin, North West Shelf Australia and covers 12 600 km2. One of the primary objectives of this survey was to produce a wide coverage of high quality imaging with advanced processing technology within an agreed turnaround time. The complexity of the overburden was one of the imaging challenges that impacted the structuration and image quality at the reservoir level. Unlike traditional full-waveform inversion (FWI) workflow, here, FWI was introduced early in the workflow in parallel with acquisition and preprocessing to produce a reliable near surface velocity model from a smooth starting model. FWI derived an accurate and detailed near surface model, which subsequently benefitted the common image point (CIP) tomography model updates through to the deeper intervals. The objective was to complete the FWI model update for the overburden concurrently with the demultiple stages hence reflection time CIP tomography could start with a reasonably good velocity model upon completion of the demultiple process.


Author(s):  
Gleb S. Chernyshov ◽  
◽  
Anton A. Duchkov ◽  
Aleksander A. Nikitin ◽  
Ivan Yu. Kulakov ◽  
...  

The problem of tomographic inversion is non–unique and requires regularization to solve it in a stable manner. It is highly non–trivial to choose between various regularization approaches or tune the regularization parameters themselves. We study the influence of one particular regularization parameter on the resolution and accuracy the tomographic inversion for the near–surface model building. We propose another regularization parameter, which allows to increase the accuracy of model building.


2012 ◽  
Vol 9 (4) ◽  
pp. 475-482
Author(s):  
Kai Yang ◽  
Xing Zhou ◽  
Hui Li ◽  
Yu-Zhu Liu

Sign in / Sign up

Export Citation Format

Share Document