Optimizing Horizontal Stimulation Design Utilizing Reservoir Characterization from Decline Curve Analysis

2011 ◽  
Author(s):  
Veronica Monica Gonzales ◽  
Jeffrey Guy Callard
SPE Journal ◽  
2021 ◽  
pp. 1-11
Author(s):  
Randy D. Hazlett ◽  
Umer Farooq ◽  
Desarazu K. Babu

Summary Decline curve analysis (DCA) has been the mainstay in unconventional reservoir evaluation. Because of the extremely low matrix permeability, each well is evaluated economically for ultimate recovery as if it were its own reservoir. Classification and normalization of well potential is difficult because of ever-changing stimulation total contact area and a hyperbolic curve fit parameter that is disconnected from any traditional reservoir characterization descriptor. A new discrete fracture model approach allows direct modeling of inflow performance in terms of fracture geometry, drainage volume shape, and matrix permeability. Running such a model with variable geometrical input to match the data in lieu of standard regression techniques allows extraction of a meaningful parameter set for reservoir characterization, an expected outcome from all conventional well testing. Because the entirety of unconventional well operation is in transient mode, the discrete fractured well solution to the diffusivity equation is used to model temporal well performance. The analytical solution to the diffusivity equation for a line source or a 2D fracture operating under constrained bottomhole pressure consists of a sum of terms, each with exponential damping with time. Each of these terms has a relationship with the constant rate, semisteady-state solution for inflow, although the well is not operated with constant rate, nor will this flow regime ever be realized. The new model is compared with known literature models, and sensitivity analyses are presented for variable geometry to illustrate the depiction of different time regimes naturally falling out of the unified diffusivity equation solution for discrete fractures. We demonstrate that apparent hyperbolic character transitioning to exponential decline can be modeled directly with this new methodology without the need to define any crossover point. The mathematical solution to the physical problem captures the rate transient functionality and any and all transitions. Each exponential term in the model is related to the various possible interferences that may develop, each occurring at a different time, thus yielding geometrical information about the drainage pattern or development of fracture interference within the context of ultralow matrix permeability. Previous results analyzed by traditional DCA can be reinterpreted with this model to yield an alternate set of descriptors. The approach can be used to characterize the efficacy of evolving stimulation practices in terms of geometry within the same field and thus contribute to the current type curve analyses subject to binning. It enables the possibility of intermixing of vertical and horizontal well performance information as simply gathering systems of different geometry operating in the same reservoir. The new method will assist in reservoir characterization and evaluation of evolving stimulation technologies in the same field and allow classification of new type curves.


2015 ◽  
Vol 50 (1) ◽  
pp. 29-38 ◽  
Author(s):  
MS Shah ◽  
HMZ Hossain

Decline curve analysis of well no KTL-04 from the Kailashtila gas field in northeastern Bangladesh has been examined to identify their natural gas production optimization. KTL-04 is one of the major gas producing well of Kailashtila gas field which producing 16.00 mmscfd. Conventional gas production methods depend on enormous computational efforts since production systems from reservoir to a gathering point. The overall performance of a gas production system is determined by flow rate which is involved with system or wellbore components, reservoir pressure, separator pressure and wellhead pressure. Nodal analysis technique is used to performed gas production optimization of the overall performance of the production system. F.A.S.T. Virtu Well™ analysis suggested that declining reservoir pressure 3346.8, 3299.5, 3285.6 and 3269.3 psi(a) while signifying wellhead pressure with no changing of tubing diameter and skin factor thus daily gas production capacity is optimized to 19.637, 24.198, 25.469, and 26.922 mmscfd, respectively.Bangladesh J. Sci. Ind. Res. 50(1), 29-38, 2015


1989 ◽  
Author(s):  
L. Turki ◽  
J.A. Demski ◽  
A.S. Grader

SPE Journal ◽  
2021 ◽  
pp. 1-14
Author(s):  
Boxiao Li ◽  
Travis C. Billiter ◽  
Timothy Tokar

Summary Decline curve analysis (DCA) has been widely applied in production forecasting of wells in unconventional hydrocarbon reservoirs. However, traditional curve-fit-based methods fall short of forecast accuracy due to three weaknesses: first, they cannot capture the reservoir signals not modeled by the underlying DCA model formulas; second, when predicting the production of a target well, the production history of other wells in the geologic formation (which is valuable information) is not considered; third, the wells’ geographic, geologic, wellbore, well spacing, and completion properties, which are highly relevant to production capability, are not used. More recent approaches have begun replacing traditional DCA with machine-learning methods [e.g., random forest (RF), support vector regression (SVR), etc.] for production forecast. Nevertheless, these methods are still suboptimal in detecting similar production trends in different wells, leading to large forecast error. A new and simple method called dynamic production rescaling (DPR) is developed to improve the accuracy of machine-learning DCA (ML-DCA). By combining DPR with common ML-DCA methods, we observe that the error mean, deviation, and skewness can be significantly reduced by 15 to 35% compared with ML-DCA without DPR. The error reduction is 30 to 60% compared with automatic curve fit of the traditional modified Arps DCA model. DPR has been tested successfully on monthly production data of over 20,000 unconventional horizontal wells in the Permian and Appalachian basins for both long- and short-term forecasts. The significant error reduction is consistent across different basins and formations. DPR is computationally efficient, so a large number of wells can be analyzed automatically and quickly. Moreover, the effectiveness and efficiency of DPR is independent of the underlying machine-learning algorithm, further demonstrating its robustness.


Sign in / Sign up

Export Citation Format

Share Document