Successful Application of Novel Fiber Laden Self-Diverting Acid System during Fracturing Operations of Naturally Fractured Carbonates in Saudi Arabia

Author(s):  
Jairo Alonso Leal Jauregui ◽  
Ataur Ripon Malik ◽  
Walter Nunez Garcia ◽  
Jose Ricardo Solares ◽  
Tomislav Bukovac ◽  
...  
2021 ◽  
Author(s):  
Faizan Ahmed Siddiqi ◽  
Carlos Arturo Banos Caballero ◽  
Fabricio Moretti ◽  
Mohamed AlMahroos ◽  
Uttam Aswal ◽  
...  

Abstract Lost circulation is one of the major challenges while drilling oil and gas wells across the world. It not only results in nonproductive time and additional costs, but also poses well control risk while drilling and can be detrimental to zonal isolation after the cementing operation. In Ghawar Gas field of Saudi Arabia, lost circulation across some naturally fractured formations is a key risk as it results in immediate drilling problems such as well control, formation pack-off and stuck pipe. In addition, it can lead to poor isolation of hydrocarbon-bearing zones that can result in sustained casing pressure over the life cycle of the well. A decision flowchart has been developed to combat losses across these natural fractures while drilling, but there is no single solution that has a high success rate in curing the losses and regaining returns. Multiple conventional lost circulation material pills, conventional cement plugs, diesel-oil-bentonite-cement slurries, gravel packs, and reactive pills have been tried on different wells, but the probability of curing the losses is quite low. The success with these methods has been sporadic and shown poor repeatability, so the need of an engineered approach to mitigate losses is imperative. An engineered composite lost-circulation solution was designed and pumped to regain the returns successfully after total losses across two different formations on a gas well in Ghawar field. Multiple types of lost-circulation material were tried on this well; however, all was lost to the naturally fractured carbonate formation. Therefore, a lost-circulation solution was proposed that included a fiber-based lost-circulation control (FBLC) pill, composed of a viscosifier, optimized solid package and engineered fiber system, followed by a thixotropic cement slurry. The approach was to pump these fluids in a fluid train so the FBLC pill formed a barrier at the face of the formation while the thixotropic cement slurry formed a rapid gel and quickly set after the placement to minimize the risk of losing all the fluids to the formation. Once this solution was executed, it helped to regain fluid returns successfully across one of the naturally fractured zones. Later, total losses were encountered again across a deeper loss zone that were also cured using this novel approach. The implementation of this lost-circulation system on two occasions in different formations has proven its applicability in different conditions and can be developed into a standard engineered approach for curing losses. It has greatly helped to build confidence with the client, as it contributed towards minimizing non-productive time, mitigated the risk of well control, and assisted in avoiding any remedial cementing operations that may have developed due to poor zonal isolation across certain critical flow zones.


SPE Journal ◽  
2019 ◽  
Vol 25 (02) ◽  
pp. 609-631 ◽  
Author(s):  
Mahmoud T. Ali ◽  
Ahmed A. Ezzat ◽  
Hisham A. Nasr-El-Din

Summary Designing matrix-acid stimulation treatments in vuggy and naturally fractured carbonate reservoirs is a challenging problem in the petroleum industry. It is often difficult to physically model this process, and current mathematical models do not consider vugs or fractures. There is a significant gap in the literature for models that design and evaluate matrix-acid stimulation in vuggy and naturally fractured carbonate reservoirs. The objective of this work is to develop a new model to simulate matrix acidizing under field conditions in vuggy and naturally fractured carbonates. To obtain accurate and reliable simulation parameters, acidizing coreflood experiments were modeled using a reactive-flow simulator. A 3D radial field-scale model was used to study the flow of acid in the presence of vugs (pore spaces that are significantly larger than grains) and natural fractures (breaks in the reservoir that were formed naturally by tectonic events). The vugs’ size and distribution effects on acid propagation were studied under field conditions. The fracture length, conductivity, and orientation, and the number of fractures in the formation, were studied by the radial model. The results of the numerical simulation were used to construct Gaussian-process (GP)-based surrogate models for predicting acid propagation in vuggy and naturally fractured carbonates. Finally, the acid propagation in vuggy/naturally fractured carbonates was evaluated, as well.The simulation results of vuggy carbonates show that the presence of vugs in carbonates results in faster and deeper acid propagation in the formation when compared with homogeneous reservoirs at injection velocities lower than 8×10–4 m/s. Results also revealed that the size and density of the vugs have a significant impact on acid consumption and the overall performance of the acid treatment. The output of the fracture model illustrates that under field conditions, fracture orientations do not affect the acid-propagation velocity. The acid does not touch all of the fractures around the well. The GP model predictions have an accuracy of approximately 90% for both vuggy and naturally fractured cases. The vuggy/naturally fractured model simulations reveal that fractures are the main reason behind the fast acid propagation in these highly heterogeneous reservoirs.


2008 ◽  
Author(s):  
Francisco Orlando Garzon ◽  
Jose Ricardo Solares ◽  
Venkateshwaran Ramanathan ◽  
Carlos Alberto Franco ◽  
Hamad Mohammed Al-Marri ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document