Approximate Physics-Discrete Simulation of the Steam-Chamber Evolution in Steam-Assisted Gravity Drainage

SPE Journal ◽  
2018 ◽  
Vol 24 (02) ◽  
pp. 477-491 ◽  
Author(s):  
Enrique Gallardo ◽  
Clayton V. Deutsch

Summary Steam-assisted gravity drainage (SAGD) is a thermal-recovery process to produce bitumen from oil sands. In this technology, steam injected in the reservoir creates a constantly evolving steam chamber while heated bitumen drains to a production well. Understanding the geometry and the rate of growth of the steam chamber is necessary to manage an economically successful SAGD project. This work introduces an approximate physics-discrete simulator (APDS) to model the steam-chamber evolution. The algorithm is formulated and implemented using graph theory, simplified porous-media flow equations, heat-transfer concepts, and ideas from discrete simulation. The APDS predicts the steam-chamber evolution in heterogeneous reservoirs and is computationally efficient enough to be applied over multiple geostatistical realizations to support decisions in the presence of geological uncertainty. The APDS is expected to be useful for selecting well-pair locations and operational strategies, 4D-seismic integration in SAGD-reservoir characterization, and caprock-integrity assessment.

SPE Journal ◽  
2016 ◽  
Vol 22 (03) ◽  
pp. 902-911 ◽  
Author(s):  
M.. Heidari ◽  
S. H. Hejazi ◽  
S. M. Farouq Ali

Summary Steam-assisted gravity drainage (SAGD) is one of the successful in-situ thermal-recovery methods for oil-sands production. In this paper, we provide a simple semianalytical model that can accurately analyze an SAGD project with variable properties. In particular, we investigate the effect of temperature-dependent properties such as thermal conductivity, heat capacity, and rock density on SAGD performance. The proposed model sequentially solves the transient nonlinear heat-transfer equation coupled with the continuity equation with Kirchhoff's transformation and the heat integral method (HIM). A criterion for timestep selection is defined on the basis of the Courant and Péclet numbers to guarantee the stability of the sequential technique. The results illustrate that the temperature-dependent physical properties affect temperature distributions ahead of steam chamber which consequently have a significant impact on the cumulative oil production and oil-production rate. Moreover, the results show that the temperature profile ahead of the steam chamber changes with time and space, and a 2D transient assumption for SAGD modeling is necessary. The semianalytical model runs in a small fraction of numerical-simulator runtime, yet it provides reasonable results. Thus, it has the potential to be used as a tool for quick SAGD evaluations.


Energies ◽  
2021 ◽  
Vol 14 (2) ◽  
pp. 427
Author(s):  
Jingyi Wang ◽  
Ian Gates

To extract viscous bitumen from oil sands reservoirs, steam is injected into the formation to lower the bitumen’s viscosity enabling sufficient mobility for its production to the surface. Steam-assisted gravity drainage (SAGD) is the preferred process for Athabasca oil sands reservoirs but its performance suffers in heterogeneous reservoirs leading to an elevated steam-to-oil ratio (SOR) above that which would be observed in a clean oil sands reservoir. This implies that the SOR could be used as a signature to understand the nature of heterogeneities or other features in reservoirs. In the research reported here, the use of the SOR as a signal to provide information on the heterogeneity of the reservoir is explored. The analysis conducted on prototypical reservoirs reveals that the instantaneous SOR (iSOR) can be used to identify reservoir features. The results show that the iSOR profile exhibits specific signatures that can be used to identify when the steam chamber reaches the top of the formation, a lean zone, a top gas zone, and shale layers.


2010 ◽  
Author(s):  
Weiqiang Li ◽  
Daulat D. Mamora

Abstract Steam Assisted Gravity Drainage (SAGD) is one successful thermal recovery technique applied in the Athabasca oil sands in Canada to produce the very viscous bitumen. Water for SAGD is limited in supply and expensive to treat and to generate steam. Consequently, we conducted a study into injecting high-temperature solvent instead of steam to recover Athabasca oil. In this study, hexane (C6) coinjection at condensing condition is simulated using CMG STARS to analyze the drainage mechanism inside the vapor-solvent chamber. The production performance is compared with an equivalent steam injection case based on the same Athabasca reservoir condition. Simulation results show that C6 is vaporized and transported into the vapor-solvent chamber. At the condensing condition, high temperature C6 reduces the viscosity of the bitumen more efficiently than steam and can displace out all the original oil. The oil production rate with C6 injection is about 1.5 to 2 times that of steam injection with oil recovery factor of about 100% oil initially-in-place. Most of the injected C6 can be recycled from the reservoir and from the produced oil, thus significantly reduce the solvent cost. Results of our study indicate that high-temperature solvent injection appears feasible although further technical and economic evaluation of the process is required.


SPE Journal ◽  
2014 ◽  
Vol 19 (06) ◽  
pp. 1126-1150 ◽  
Author(s):  
Sahar Ghannadi ◽  
Mazda Irani ◽  
Rick Chalaturnyk

Summary Steam-assisted gravity drainage (SAGD) is one successful thermal-recovery technique applied in Alberta oil-sand reservoirs. When considering in-situ production from bitumen reservoirs, one must reduce viscosity for the bitumen to flow toward the production well. Steam injection is currently the most promising thermal-recovery method. Although steamflooding has proved to be a commercially viable way to extract bitumen from bitumen reservoirs, caprock integrity and the risk of losing steam containment can be challenging operational problems. Because permeability is low in Albertan thermal-project caprock formations, heating greatly increases the pressure on any water trapped in pores as a result of water thermal expansion. This water also sees a great increase in volume as it flashes to steam, causing a large effective-stress reduction. After this condition is established, pore-pressure increases can lead to caprock shear failure or tensile fracturing, and to subsequent caprock-integrity failure or potential casing failure. It is typically believed that low-permeability caprocks impede the transmission of pore pressure from reservoirs, making them more resistant to shear failure (Collins 2005, 2007). In considering the “thermo-hydromechanical pressurization” physics, low-permeability caprocks are not always more resistant. As the steam chamber rises into the caprock, the heated pore fluids may flash to steam. Consequently, there is a vapor region between the steam-chamber interface penetrated into the caprock and the water region within the caprock which is still at a subcritical state. This study develops equations for fluid-mass and thermal-energy conservation, evaluating the thermo-hydromechanical pressurization in low-permeability caprocks and the flow of steam and water after steam starts to be injected as part of the SAGD process. Calculations are made for both short-term and long-term responses, and evaluated thermal pressurization is compared for caprocks with different stiffness states and with different permeabilities. One can conclude that the stiffer and less permeable the caprock, the greater the thermo-hydromechanical pressurization; and that the application of SAGD can lead to high pore pressure and potentially to caprock shear, and to subsequent steam release to the surface or potential casing failure.


Geophysics ◽  
2016 ◽  
Vol 81 (4) ◽  
pp. E227-E241 ◽  
Author(s):  
Sarah G. R. Devriese ◽  
Douglas W. Oldenburg

We have investigated the use of electric and electromagnetic (EM) methods to monitor the growth of steam-assisted gravity drainage (SAGD) steam chambers. SAGD has proven to be a successful method for extracting bitumen from the Athabasca oil sands in Alberta, Canada. However, complexity and heterogeneity within the reservoir could impede steam chamber growth, thereby limiting oil recovery and increase production costs. Using seismic data collected over an existing SAGD project, we have generated a synthetic steam chamber and modeled it as a conductive body within the bitumen-rich McMurray Formation. Simulated data from standard crosswell electrical surveys, when inverted in three dimensions, show existence of the chamber but lack the resolution necessary to determine the shape and size. By expanding to EM surveys, our ability to recover and resolve the steam chamber is significantly enhanced. We use a simplified survey design procedure to design a variety of field surveys that include surface and borehole transmitters operating in the frequency or time domain. Each survey is inverted in three dimensions, and the results are compared. Importantly, despite the shielding effects of the highly conductive cap rock over the McMurray Formation, we have determined that it is possible to electromagnetically excite the steam chamber using a large-loop surface transmitter. This motivates a synthetic example, constructed using the geology and resistivity logging data of a future SAGD site, where we simulate data from single and multiple surface loop transmitters. We have found that even when measurements are restricted to the vertical component of the electric field in standard observation wells, if multiple transmitters are used, the inversion recovers three steam chambers and discerns an area of limited steam growth that results from a blockage in the reservoir. The effectiveness of the survey shows that this EM methodology is worthy of future investigation and field deployment.


SPE Journal ◽  
2013 ◽  
Vol 19 (02) ◽  
pp. 280-288 ◽  
Author(s):  
Mazda Irani ◽  
Ian Gates

Summary Steam-assisted gravity drainage (SAGD) is a successful thermal-recovery technique applied in oil-sand reservoirs in which the viscosity of the oil (bitumen) is typically in the hundreds of thousands to millions of centipoise. For the in-situ production from bitumen reservoirs, bitumen viscosity must be reduced to achieve the mobility required to flow toward the production well. Many factors influence the efficiency and rate at which bitumen is mobilized. The controlling feature of steam-based recovery processes is heat transfer from the steam chamber to the formation—the greater the heat flux, the larger the oil volume heated, and the higher the oil-drainage rate. Previous studies have demonstrated that instability at the steam-chamber edge can enhance heat transfer there by creating limited-amplitude steam fingers that enlarge the heat-transfer area, thus leading to greater thermal efficiency of the recovery process. This, in turn, increases oil production. At this point, stability studies have focused on the instability between steam and oil at the edge of the chamber—none has examined the case between steam condensate and oil. In the research documented here, the stability between steam condensate and bitumen at the edge of the chamber is explored. Here, a steam-pressure diffusion equation at the moving chamber interface is derived. The perturbations of the pressure and condensate velocity are substituted into the pressure diffusion equation and Darcy's law to realize a linear-stability equation governing the growth of disturbances at the interface. The results show that the stability is controlled by moving-interface velocity and reservoir water-phase hydraulic diffusivity.


Sign in / Sign up

Export Citation Format

Share Document