Stochastic Modeling of Two-Phase Flowback of Multi-Fractured Horizontal Wells to Estimate Hydraulic Fracture Properties and Forecast Production

Author(s):  
Jesse Williams-kovacs ◽  
Christopher R. Clarkson
ACS Omega ◽  
2020 ◽  
Vol 5 (41) ◽  
pp. 26955-26955
Author(s):  
Hongwen Luo ◽  
Beibei Jiang ◽  
Haitao Li ◽  
Ying Li ◽  
Zhangxin Chen

Processes ◽  
2019 ◽  
Vol 7 (10) ◽  
pp. 664 ◽  
Author(s):  
Lei Li ◽  
Guanglong Sheng ◽  
Yuliang Su

Hydraulic fracturing is a necessary method to develop shale gas reservoirs effectively and economically. However, the flow behavior in multi-porosity fractured reservoirs is difficult to characterize by conventional methods. In this paper, combined with apparent porosity/permeability model of organic matter, inorganic matter and induced fractures, considering the water film in unstimulated reservoir volume (USRV) region water and bulk water in effectively stimulated reservoir volume (ESRV) region, a multi-media water-gas two-phase flow model was established. The finite difference is used to solve the model and the water-gas two-phase flow behavior of multi-fractured horizontal wells is obtained. Mass transfer between different-scale media, the effects of pore pressure on reservoirs and fluid properties at different production stages were considered in this model. The influence of the dynamic reservoir physical parameters on flow behavior and gas production in multi-fractured horizontal wells is studied. The results show that the properties of the total organic content (TOC) and the inherent porosity of the organic matter affect gas production after 40 days. With the gradual increase of production time, the gas production rate decreases rapidly compared with the water production rate, and the gas saturation in the inorganic matter of the ESRV region gradually decreases. The ignorance of stress sensitivity would cause the gas production increase, and the ignorance of organic matter shrinkage decrease the gas production gradually. The water film mainly affects gas production after 100 days, while the bulk water has a greater impact on gas production throughout the whole period. The research provides a new method to accurately describe the two-phase fluid flow behavior in different scale media of fractured shale gas reservoirs.


2011 ◽  
Vol 14 (02) ◽  
pp. 248-259 ◽  
Author(s):  
E.. Ozkan ◽  
M Brown ◽  
R.. Raghavan ◽  
H.. Kazemi

Summary This paper presents a discussion of fractured-horizontal-well performance in millidarcy permeability (conventional) and micro- to nanodarcy permeability (unconventional) reservoirs. It provides interpretations of the reasons to fracture horizontal wells in both types of formations. The objective of the paper is to highlight the special productivity features of unconventional shale reservoirs. By using a trilinear-flow model, it is shown that the drainage volume of a multiple-fractured horizontal well in a shale reservoir is limited to the inner reservoir between the fractures. Unlike conventional reservoirs, high reservoir permeability and high hydraulic-fracture conductivity may not warrant favorable productivity in shale reservoirs. An efficient way to improve the productivity of ultratight shale formations is to increase the density of natural fractures. High natural-fracture conductivities may not necessarily contribute to productivity either. Decreasing hydraulic-fracture spacing increases the productivity of the well, but the incremental production gain for each additional hydraulic fracture decreases. The trilinear-flow model presented in this work and the information derived from it should help the design and performance prediction of multiple-fractured horizontal wells in shale reservoirs.


SPE Journal ◽  
2013 ◽  
Vol 18 (04) ◽  
pp. 795-812 ◽  
Author(s):  
C.R.. R. Clarkson ◽  
J.D.. D. Williams-Kovacs

Summary Early fluid production and flowing pressure data gathered immediately after fracture stimulation of multifractured horizontal wells may provide an early opportunity to generate long-term forecasts in shale-gas (and other hydraulically fractured) reservoirs. These early data, which often consist of hourly (if not more frequent) monitoring of fracture/formation fluid rates, volumes, and flowing pressures, are gathered on nearly every well that is completed. Additionally, fluid compositions may be monitored to determine the extent of load fluid recovery, and chemical tracers added during stage treatments to evaluate inflow from each of the stages. There is currently debate within the industry of the usefulness of these data for determining the long-term production performance of the wells. “Rules of thumb” derived from the percentage of load-fluid recovery are often used by the industry to provide a directional indication of well performance. More-quantitative analysis of the data is rarely performed; it is likely that the multiphase-flow nature of flowback and the possibility of early data being dominated by wellbore-storage effects have deterred many analysts. In this work, the use of short-term flowback data for quantitative analysis of induced-hydraulic-fracture properties is critically evaluated. For the first time, a method for analyzing water and gas production and flowing pressures associated with the flowback of shale-gas wells, to obtain hydraulic-fracture properties, is presented. Previous attempts have focused on single-phase analysis. Examples from the Marcellus shale are analyzed. The short (less than 48 hours) flowback periods were followed by long-term pressure buildups (approximately 1 month). Gas + water production data were analyzed with analytical simulation and rate-transient analysis methods designed for analyzing multiphase coalbed-methane (CBM) data. This analogy is used because two-phase flowback is assumed to be similar to simultaneous flow of gas and water during long-term production through the fracture system of coal. One interpretation is that the early flowback data correspond to wellbore + fracture volume depletion (storage). It is assumed that fracture-storage volume is much greater than wellbore storage. This flow regime appears consistent with what is interpreted from the long-term pressure-buildup data, and from the rate-transient analysis of flowback data. Assuming further that the complex fracture network created during stimulation is confined to a region around perforation clusters in each stage, one can see that fluid-production data can be analyzed with a two-phase tank-model simulator to determine fracture permeability and drainage area, the latter being interpreted to obtain an effective (producing) fracture half-length given geometrical considerations. Total fracture half-length, derived from rate-transient analysis of online (post-cleanup) data, verifies the flowback estimates. An analytical forecasting tool that accounts for multiple sequences of post-storage linear flow, followed by late-stage boundary flow, was developed to forecast production with flowback-derived parameters, volumetric inputs, matrix permeability, completion data, and operating constraints. The preliminary forecasts are in very good agreement with online production data after several months of production. The use of flowback data to generate early production forecasts is therefore encouraging, but needs to be tested for a greater data set for this shale play and for other plays, and should not be used for reserves forecasting.


Sign in / Sign up

Export Citation Format

Share Document