A Real Case Study: "Efficient Monitoring and Evaluation the Superficial Production Network" - Litoral de Tabasco Asset

2013 ◽  
Author(s):  
F. Mijares ◽  
E. Molina ◽  
C. Escalona ◽  
L. A. Montes De Oca ◽  
W. Jageregger
2021 ◽  
Vol 14 (5) ◽  
Author(s):  
Ronak Ghanbari ◽  
Behrouz Sobhani ◽  
Mahshid Aghaee ◽  
Amir oshnooei nooshabadi ◽  
Vahid Safarianzengir

Author(s):  
Beniamino Di Martino ◽  
Dario Branco ◽  
Luigi Colucci Cante ◽  
Salvatore Venticinque ◽  
Reinhard Scholten ◽  
...  

AbstractThis paper proposes a semantic framework for Business Model evaluation and its application to a real case study in the context of smart energy and sustainable mobility. It presents an ontology based representation of an original business model and examples of inferential rules for knowledge extraction and automatic population of the ontology. The real case study belongs to the GreenCharge European Project, that in these last years is proposing some original business models to promote sustainable e-mobility plans. An original OWL Ontology contains all relevant Business Model concepts referring to GreenCharge’s domain, including a semantic description of TestCards, survey results and inferential rules.


2020 ◽  
Vol 6 ◽  
pp. 770-775 ◽  
Author(s):  
J.P. Ribeiro ◽  
C.C. Marques ◽  
I. Portugal ◽  
M.I. Nunes

Author(s):  
Ioannis Souliotis ◽  
Nikolaos Voulvoulis

AbstractThe EU Water Framework Directive requires the development of management responses aimed towards improving water quality as a result of improving ecosystem health (system state). Ecosystems have potential to supply a range of services that are of fundamental importance to human well-being, health, livelihoods and survival, and their capacity to supply these services depends on the ecosystem condition (its structure and processes). According to the WFD, Programmes of Measures should be developed to improve overall water status by reducing anthropogenic catchment pressures to levels compatible with the achievement of the ecological objectives of the directive, and when designed and implemented properly should improve the ecological condition of aquatic ecosystems that the delivery of ecosystem services depends on. Monitoring and evaluation of implemented measures are crucial for assessing their effectiveness and creating the agenda for consecutive planning cycles. Considering the challenges of achieving water status improvements, and the difficulties of communicating these to the wider public, we develop a framework for the evaluation of measures cost-effectiveness that considers ecosystem services as the benefits from the reduction of pressures on water bodies. We demonstrate its application through a case study and discuss its potential to facilitate the economic analysis required by the directive, and that most European water authorities had problems with. Findings demonstrate the potential of the methodology to effectively incorporate ecosystem services in the assessment of costs and benefits of proposed actions, as well as its potential to engage stakeholders.


2021 ◽  
Author(s):  
Joanna Doummar ◽  
Nidal Farran ◽  
Marwan Fahs ◽  
Benjamin Belfort ◽  
Thomas Graf

<p>Climate change and pollution are posing additional unprecedented threats to existing water resources, especially to water supply from karst aquifers in Mediterranean and semi-arid regions. A numerical model considering the most important key hydraulic parameters can forecast the impact of any given input on model quality and quantity output. In this work, we propose to model flow and transport using Comsol multiphysics in a synthetic model and to apply it to a simplified real case study (Jeita spring in Lebanon supplying water to 1.5 million inhabitants). The model geometry consists of a 5300 m long variably saturated horizontal conduit portrayed as 1) 2-D continuum and/or 2) a channel draining a porous equivalent matrix (400 m thick). Flow is simulated using the Richards Equation in both saturated and unsaturated medium. Recharge is applied vertically as both diffuse and point source in a shaft linked to the conduit. Percentages of fast infiltration rates are obtained from the analysis of event time series recorded at the spring (electrical conductivity and discharge). Flow rates at the outlet are used for transient model calibration. Mean velocities, dispersivities, and phreatic conduit diameters obtained from tracer experiments under various flow periods are used for transport validation in the channel. The aim is to test the validity of a functional simplified flow model on a complex real case and to identify based on a sensitivity analysis the key parameters that allow an optimal calibration of such a model. </p>


Sign in / Sign up

Export Citation Format

Share Document