History Matching and Forecasting Tight Gas Condensate and Oil Wells by Use of an Approximate Semianalytical Model Derived From the Dynamic-Drainage-Area Concept

2016 ◽  
Vol 19 (04) ◽  
pp. 540-552 ◽  
Author(s):  
C. R. Clarkson ◽  
F.. Qanbari

Summary Recently, low-permeability (tight) gas condensate and oil reservoirs have been the focus of exploitation by operators in North America. Multifractured horizontal wells (MFHWs) producing from these reservoirs commonly exhibit long periods of transient flow, during which two-phase flow of oil and gas begins because of well flowing pressures dropping to less than saturation pressure. History matching and forecasting of such wells can be rigorously performed by use of numerical simulation, but this approach requires significant data and time to set up. Analytical methods, although requiring fewer data and less time to apply, have historically been developed only for single-phase-flow scenarios. In this work, a novel and rigorous analytical method is developed for history matching and forecasting MFHWs experiencing multiphase flow during the transient and boundary-dominated flow periods. The distance-of-investigation (DOI) concept has been used for many years in pressure-transient analysis to estimate distances of reservoir boundaries to wells, among other applications. In the current work, the DOI concept is used to estimate dynamic drainage area (DDA) to forecast tight gas condensate and oil wells; a linear flow geometry is assumed. During transient flow, the DDA is calculated at each timestep by use of the linear-flow DOI formulation; a multiphase version of the linear-flow productivity-index (PI) equation and material-balance equations for gas, condensate, and oil are solved iteratively for pressure, saturation, and fluid-production rate. The PI equations for gas and oil use pseudopressure, which is evaluated with saturation/pressure relationships derived from pressure/volume/temperature data. For boundary-dominated flow, when the drainage area is static, the inflow equations are again coupled with material balance for both phases. The new method is validated against numerical simulation, covering a wide range of fluid properties and operating conditions. The new method matches the simulation acceptably for all cases studied. Field examples of MFHWs are also analyzed to demonstrate the practical applicability of the approach. The three liquid-rich shale examples analyzed were also chosen to represent a wide range of fluid properties. In all cases, acceptable history matches are achieved. The new analytical forecasting/history-matching procedure developed in this work provides a practical alternative to numerical simulation for tight gas condensate and oil experiencing two-phase flow during the transient-flow period. The method, which does not rely on Laplace-space solutions, is conceptually simple to understand, easy to implement, and avoids the inconvenience of Laplace-space inversion.

2011 ◽  
Author(s):  
Abdolrahim Ataei ◽  
Wong Tiong Hui ◽  
Keng Seng Chan ◽  
Raymond K.Z. Lau ◽  
Mei Ee Yeap

2011 ◽  
Author(s):  
Abdolrahim Ataei ◽  
Wong Tiong Hui ◽  
Keng Seng Chan ◽  
Raymond K.Z. Lau ◽  
Mei Ee Yeap

2021 ◽  
pp. 1-19
Author(s):  
Hossein Ahmadi ◽  
Christopher R. Clarkson ◽  
Hamidreza Hamdi ◽  
Hamid Behmanesh

Summary Reduction of fracture/well spacing and increases in hydraulic fracture stimulation treatment size are popular strategies for improving hydrocarbon recovery from multifractured horizontal wells (MFHWs). However, these strategies can also increase the chance of fracture interference, which can not only negatively impact the overall production but also introduce complexities for production data analysis. A semianalytical model is therefore developed to analyze production data from two communicating MFHWs and applied to a field case. The new semianalytical model uses the dynamic drainage area (DDA) concept and assumes three porosity regions. The three-region model is comprised of a primary hydraulic fracture (PHF), an enhanced fractured region (EFR) adjacent to the PHF, and a nonstimulated region (NSR). Assuming a well pair primarily communicates through PHFs, the equations for two communicating wells are coupled and solved simultaneously to model the fluid transfer between the wells. This method is used within a history-matching framework to estimate the communication between the wells by matching the production data. The semianalytical model is first verified against a more rigorous, fully numerical simulation model for a range of fracture/reservoir properties. These comparisons demonstrate that there is excellent agreement between the fully numerical simulation model results and the new semianalytical model. The semianalytical model is then employed to history-match production data from six MFHWs (drilled from two adjacent well pads) exhibiting different degrees of communication. For the purpose of history matching the data, only strong communication between pairs of wells (intrapair communication) is considered in the three-region model, and the results show good agreement with the field data. A flexible, yet simple, semianalytical model is developed for the first time that can accurately model the communication between multiple well pairs. This approach can be used by reservoir engineers to analyze the production data from communicating MFHWs.


2015 ◽  
Author(s):  
H.. Behmanesh ◽  
H.. Hamdi ◽  
C. R. Clarkson

Abstract Hydraulically-fractured vertical and horizontal wells completed in the tight formations typically exhibit long periods of transient linear flow that may last many years or decades. From this transient linear flow period, the linear flow parameter (xf√k) may be extracted. However, changes in effective permeability to the oil phase during production, caused by wellbore pressure falling below the saturation pressure, affect the flow dynamics in tight oil reservoirs and complicate the analysis. The use of methods that assume single-phase flow properties, such as the square-root of time plot, can lead to significant errors in linear flow parameter estimates. In this study, an analytical method is introduced to mathematically correct the slope of the square-root-of-time plot for the effects of multi-phase flow through the use of modified pseudovariables. Although the correction was derived for wells producing at constant flowing pressure during transient linear flow, the method is extended for wells producing at variable rate/flowing pressures. In order to evaluate pseudovariables used in the correction, the saturation-pressure relationship must be known. In this work, an analytical method for evaluating the saturation-pressure relationship is also developed. The results of our new analytical method for linear flow analysis are validated against numerical simulation. The new method yields linear flow parameter estimates that are within 10% of those input into the numerical simulator.


Author(s):  
Daoming Deng ◽  
Jing Gong

Transporting natural gas and gas condensate in a long distance pipeline occurs frequently during the development of offshore or desert gas condensate and/or oil fields. However, the thermohydraulic calculation of gas-condensate pipeline, especially transient flow simulation, is hitherto a challenging issue in the pipeline industry on account of a maze of complexities of pipeline undulation, changeable properties of fluid, and transfer of momentum, mass and heat. This study is intended to predict the transient flow behavior in gas-condensate pipelines. In the paper, a hydraulic and thermodynamic (such as phase behavior and properties) model for the analysis of transient gas-condensate two-phase flow in pipelines with low liquid loading is outlined. The hydraulic model is based on simplified “No Pressure Wave” model where the constitutive relation results from the Ottens et al (2001) correlation. An implicit method, the convergence and stability of which have been verified by example calculations, is utilized to solve the transient flow model equations of gas-condensate pipelines. In the end, the transient performances of low-liquid-loading gas-condensate two-phase non-isothermal flow in undulating pipelines, which are subjected to boundary conditions of increasing or decreasing inlet flow rate and specified outlet pressure with time, are numerically investigated. The results, such as pressure and liquid holdup profiles vs. time, and time evolutions of outlet condensate flow rate and accumulated liquid content etc., show that the presented model and numerical method for analyzing gas-condensate transient flow behaviors in pipelines looks reasonable.


Sign in / Sign up

Export Citation Format

Share Document