Using an Innovative Tool System to Estimate In-Situ Permeability and Pressure at Multiple Targets in a Monitoring Well in Permian Basin

Author(s):  
Lang Zhan ◽  
Phil Fair ◽  
Robert Dombrowski ◽  
Edwin Quint ◽  
Richard Cao ◽  
...  
2005 ◽  
Vol 42 (5) ◽  
pp. 1377-1390 ◽  
Author(s):  
Matthew D Alexander ◽  
Kerry TB MacQuarrie

Accurate measurements of in situ groundwater temperature are important in many groundwater investigations. Temperature is often measured in the subsurface using an access tube in the form of a piezometer or monitoring well. The impact of standpipe materials on the conduction of heat into the subsurface has not previously been examined. This paper reports on the results of a laboratory experiment and a field experiment designed to determine if different standpipe materials or monitoring instrument configurations preferentially conduct heat into the shallow sub surface. Simulations with a numerical model were also conducted for comparison to the laboratory results. Statistical analysis of the laboratory results demonstrates that common standpipe materials, such as steel and polyvinylchloride (PVC), do not affect temperature in the subsurface. Simulations with a finite element flow and heat transport model also confirm that the presence of access tube materials does not affect shallow groundwater temperature measurements. Field results show that different instrument configurations, such as piezometers and water and air filled and sealed well points, do not affect subsurface temperature measurements.Key words: groundwater temperature, temperature measurement, conduction, piezometers, piezometer standpipes, thermal modelling.


2016 ◽  
Vol 52 (4) ◽  
pp. 3113-3126 ◽  
Author(s):  
Vincent Allègre ◽  
Emily E. Brodsky ◽  
Lian Xue ◽  
Stephanie M. Nale ◽  
Beth L. Parker ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document