pumping tests
Recently Published Documents


TOTAL DOCUMENTS

355
(FIVE YEARS 46)

H-INDEX

34
(FIVE YEARS 3)

2021 ◽  
pp. 130-138
Author(s):  
Rich Laver

A sound understanding of groundwater engineering principles is a prerequisite for effective construction dewatering and the associated pumping tests. This paper makes practical recommendations to improve dewatering designs in reclaimed land in Hong Kong and the interpretation of groundwater monitoring data. The paper first introduces the reader to the hydrogeology of Hong Kong and its implications on dewatering. It then draws upon experiences in Hong Kong, reviewing and recommending best practices in groundwater monitoring, and the design of extraction and recharge wells.


Ground Water ◽  
2021 ◽  
Author(s):  
Sebastian Muller ◽  
Carsten Leven ◽  
Peter Dietrich ◽  
Sabine Attinger ◽  
Alraune Zech
Keyword(s):  

Data in Brief ◽  
2021 ◽  
pp. 107180
Author(s):  
Josip TERZIĆ ◽  
Marina FILIPOVIĆ ◽  
Ivana BOLJAT ◽  
Ana SELAK ◽  
Jasmina LUKAČ REBERSKI

2021 ◽  
Vol 11 (7) ◽  
pp. 3182
Author(s):  
Václav Ficaj ◽  
Pavel Pech ◽  
Daniel Kahuda

As the climate is changing, greater exploitation of groundwater reserves is becoming evident; however, this would have been apparent even without climate change. Therefore, increasing emphasis is given to maintaining well functionality. Wells are susceptible to aging, which reduces their efficiency. Today, there exist several solutions for determining the size of additional resistance (the skin effect), which indicates a well’s current state and that of its close surroundings. The implementation of most of these solutions is often time-consuming. To improve our tools, a goal has been set to accelerate and facilitate the method of determining the size of additional resistance. In this study, we present new software that accelerates this process. It applies an innovative method based upon a partial differential equation describing the radially symmetric flow to a real well, which occurs under an unsteady regime, using the Laplace transform. Stehfest algorithm 368 is used to invert the Laplace transform. Such software can be used to evaluate an additional-resistance well, even when a straight section evaluated using the Cooper–Jacob method is not achieved in the semilogarithmic plot of drawdown vs. log time during the pumping test. This solution is demonstrated in the comprehensive evaluation of 10 wells and 3 synthetic pumping tests.


2021 ◽  
Author(s):  
Felicitas Kaplar ◽  
Thomas Baumann

<p>Chemical stimulation of geothermal wells to remove drilling mud and to increase the connection to the reservoir are state of the art. There is hardly any deep geothermal well in the carbonates of the upper jurassic in the pre alpine foreland basin which was not developed using one or more pulses of acid. Several tons of acid are injected into the borehole and followed by a chaser to push the acid into the reservoir. Given the wide use of chemical stimulation measures, mass balance data for the stimulation is rare. This might be due to a rather simple reaction mechanism and the assumption that there is a full stoichiometric reaction and all injected acid is recovered. The efficiency of the stimulation is assessed based on the hydraulic properties derived from the short-term pumping tests following the stimulation. This project compares the full mass balance for chemical stimulation measures and the temporal development of the concentration of relevant ions during the pumping test after stimulation. The data was collected at several sites with a temporal resolution of down to 30 mins. The data includes multiple stimulations as well as stimulation with varying acids and different setup. Using this data set we want to answer the questions whether the acid is fully recovered, whether the assumption of full stochiometric reaction is valid, whether there is a difference in the transport of reactive and conservative ions, what additional value a hydrochemical analysis could add and whether on-site measurements could substitute costly measurements. The evaluation shows a distinct behaviour of the temporal development of the chloride concentration (after stimulation with hydrochloric acid) which can be described by a bi-exponential fit. The fitting parameters of the two exponential terms are getting closer with each stimulation indicating a reduced heterogeneity along the accessible flow paths around the borehole. A comparison of the full scale analysis with on-site sensors was sometimes not possible because the sensors showed a drift during the experiment or were poorly calibrated. As calcium, magnesium, and chloride ion concentrations showed different behaviour, electrical conductivity is not able to cover the full development. The mass balance indicates that a full recovery of the injected acid might take significantly longer than the short term pumping tests. Hydrochemical monitoring provides additional and relevant data about the reservoir in the surrounding of the borehole and allows important predictions about the long-term behaviour, especially if the borehole is used as injection well. For routine applications improved sensors and fast (and cheap) on-site analysis is required.</p>


Water ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 416
Author(s):  
Bwalya Malama ◽  
Devin Pritchard-Peterson ◽  
John J. Jasbinsek ◽  
Christopher Surfleet

We report the results of field and laboratory investigations of stream-aquifer interactions in a watershed along the California coast to assess the impact of groundwater pumping for irrigation on stream flows. The methods used include subsurface sediment sampling using direct-push drilling, laboratory permeability and particle size analyses of sediment, piezometer installation and instrumentation, stream discharge and stage monitoring, pumping tests for aquifer characterization, resistivity surveys, and long-term passive monitoring of stream stage and groundwater levels. Spectral analysis of long-term water level data was used to assess correlation between stream and groundwater level time series data. The investigations revealed the presence of a thin low permeability silt-clay aquitard unit between the main aquifer and the stream. This suggested a three layer conceptual model of the subsurface comprising unconfined and confined aquifers separated by an aquitard layer. This was broadly confirmed by resistivity surveys and pumping tests, the latter of which indicated the occurrence of leakage across the aquitard. The aquitard was determined to be 2–3 orders of magnitude less permeable than the aquifer, which is indicative of weak stream-aquifer connectivity and was confirmed by spectral analysis of stream-aquifer water level time series. The results illustrate the importance of site-specific investigations and suggest that even in systems where the stream is not in direct hydraulic contact with the producing aquifer, long-term stream depletion can occur due to leakage across low permeability units. This has implications for management of stream flows, groundwater abstraction, and water resources management during prolonged periods of drought.


Sign in / Sign up

Export Citation Format

Share Document